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Let R be a region of the complex plane, Z a complex Brownian motion 
starting at a point in R, and r the first time Z leaves R: 

r(co) = inf{t > 0: Zf(co) $R}. 

There are several ways to study such exit times. Here we describe a 
new approach that gives rather precise information about the moments of r. 

We shall always assume for simplicity that R contains the origin and Z 

starts there: Z0(co) = 0, CJ G ft, where (ft, À, P) is the underlying probability 
space. If F is a function analytic in the open unit disc D, let 

^ P % < ^ , [ C ^ > H I / P 

and 

\\rl'2\\p = (ETp'2)1!t>. 

THEOREM 1. Suppose R is the range of a function F analytic and 

univalent in D with F(0) = 0. Then, for0<p<<*>, 

0 ) c p | | r 1 / 2 | | p < | in i i s r P <C p | | r 1 / 2 | | p . 

In particular, 

r 1 ' 2 G Lp(Sl, A, F) ^ F G tf>(D). 

IfR is simply connected and has a nondegenerate boundary, then such 

a function F exists by the Riemann mapping theorem. 

In (1), as elsewhere in this note, the choice of the positive real numbers 

cp and Cp depends only on p. 

The right-hand side of (1) is true in a more general setting. Let 4? be a 

continuous nondecreasing function on [0, °°] with $(0) = 0 and <I>(2X) < 

7$(X), X > 0. 
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THEOREM 2. Suppose F: D —• R is analytic (but not necessarily uni
valent) in D with F(Q) = 0. Then 

sup $2n®(\F(reid)\)dd <cyE$(T1'2). 

The left-hand side of (1) also holds more generally: 

THEOREM 3. Suppose F is a function analytic in D with F(0) = 0, and, 
for almost all 6, the nontangential limit of F at eld exists and belongs to the 
complement of R. Then the left-hand side of (I) is satisfied. 

Here is a simple application of Theorem 1. Fix 0 < a < 2 and let R be 
the set of all complex numbers relQ - 1 satisfying r > 0 and |0| < wr/2. Then 
R and F, defined by F(z) = ((1 + z)/(l - z))a - 1, satisfy the conditions of 
Theorem 1 and an easy calculation gives r1^2 €LP o p < of"1. Note the 
Brownian motion Z does not take much longer to hit (-°°, - 1 ] , the comple
ment of R corresponding to a = 2, than it does to hit the larger parabolically 
shaped complement of the range of (1 + z)~~2 - 1, z E D. In both cases, 
T1'2 GLp forp<^andr 1 / 2 $LP foip>K. 

In general, if R is simply connected and has a nondegenerate boundary, 
then r1/2 E LP for p < î4. This follows from Theorem 1 and the classical 
result [2, p. 50] that a function F analytic and univalent in D satisfies F GHP\ 
0 < p < ^. A related statement, the proof of which rests partly on recent 
results of Baernstein [1], is 

THEOREM 4. Let Rs be the region obtained from R by circular sym-
metrization and let TS be the corresponding exit time. Then 

llr1 /2llp<cp | |r f
1'2 | |p , 0 < p < o o . 

The next result is closely related to Theorem 1 but does not require that 
R be simply connected. 

THEOREM 5. If0<p<°°, then r1'2 E Lp if and only if there is a 
function u harmonic in R such that \z\p < u(z), z ER. Ifu is the minimal 
harmonic function satisfying this inequality, then 

Hansen [3] defined h(R), the Hardy number of the region Rf to be the 
supremum of all p > 0 such that \z\p is majorized by a harmonic function in 
R. Let 
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e(R) = sup{p > 0: ET*12 < «>}. 

This might be called the exit number of the region R. By Theorem 5, e(R) = 
h(R). This has diverse applications. For example, by Theorem 4, e(Rs) < 
e(R); therefore h(Rs) < h(R). 

Theorem 5 holds also in Rw. 
Further results, applications, and proofs will appear elsewhere. 
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