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Let A = {Xfc}SJT=1 be a sequence of distinct nonnegative real numbers. 
It is well known that the exponential sums 

0 ) «,(*) = Z **«**'• akeR9s=l,2,---, 
k-l 

are dense in C[A, B], - °° < A < B < + «>, if and only if Müntz' condition 
Xx ^0 l/XA. = +°° holds. In this note Jackson-type results on the rate of 
convergence of the exponential sums (1) are given. Substituting 

(2) x = et~B, te[A,B], xE [a,l], 

where a = eA ~B
 9 we are led to the problem where the functions ƒ E C[a, 1], 

0 < a < 1, are to be approximated on [a, 1] by the A-polynomials 

(3) P,(*)= £ bkx
X\ bkER, s = l , 2 , - - - . 

fc=i 

Recently, many optimal or almost optimal Jackson-Müntz theorems on the 
approximation properties of the A-polynomials (3) for the interval [0, 1] have 
been published (cf. J. Bak and D. J. Newman [1] and M. v. Golitschek [2]). 
Considering intervals [a, 1], a > 0, one would expect that the A-polynomials 
have even better approximation properties than on [0, 1], as the "singular" 
point* = 0 might have less influence. Theorems 1 and 2 prove this conjecture. 

THEOREM 1. Let 0 < a < 1, M > 0. If A satisfies 

(4) 0<\k<Mk for all k= 1,2,---, 

then for each function fECr[a9 1], r > 0, and each integer s> r + 1 there 
exists a ^polynomial ps such that for all a <x < 1 
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(5) \f(x) - ps(x)\ < Krs-ru(fV; l/s) + 0(ps), 

where OJ denotes the modulus of continuity, Kr > 0 depends on a, M, and r, 
and p (0 < p < 1) depends only on a and M. 

Consequently, if the exponents A satisfy (4), the A-polynomials behave 

asymptotically as well as the ordinary algebraic polynomials. As the 5th width 

ds(Arcj) of the class Aroj(M0,• • • ,Mr+ x; [a, 1 ]) of functions in C[a, 1 ] is 

(cf. G. G. Lorentz [3, Chapters 3.7 and 9.2]), the A-polynomials of Theorem 1 

approximate asymptotically optimally in this special sense. 

EXAMPLE. The exponents A with l i m ^ ^ \k = X > 0 satisfy condition 

(4). For the corresponding problem in [0, 1] we could only prove (cf. M. v. 

Golitschek [2, p. 95]) that there exist A-polynomials ps for which 

\f(x) - ps(x)\ = 0(v5"rco(/<'*>; 1/vS)), 5 - » oo. 

THEOREM 2. Let 0 < a < 1, M > 0, e > 0. Let A satisfy 

(6) \k>Mk forall * = 1 ,2 , - - - . 

For each s > sQ (s0 sufficiently large) let \p(s) be defined as the largest positive 
integer for which 

(7) Z Y ~ > - ( 1 +e)log^. 
\lj<k<s k 

Then for each f E Cr[a9 1] and each s > s0 there exists a A-polynomial ps 

such that for all a <x < 1 

(8) \f(x) - pjpc)\ < KrHs)-r"(firh, W(*)) + 0(P*(s))> 

where Kr depends on a, rf M, and e; and p (0 < p < 1) depends on a, M, and e. 

EXAMPLE. Let \k = k log k, k = 1, 2,* • • ,M = 1, e > 0. From (7) we 
obtain 

i//(s) « 5 ^ . 

In [1] and [2] it was proved that in [0, 1] the corresponding "rate of con­
vergence" is only 

^ e x p ^ j ^ ^ U c o g s ) - * . 
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The above theorems are proved by the same method used by the author in his 
earlier paper [2] for Jackson-Müntz theorems on the interval [0, 1] : First the 
function ƒ is approximated by ordinary algebraic polynomials Pn and then each 
monomial xq (q = 0, 1,* • • , n) of Pn is approximated by appropriate A-poly-
nomials. The full details and further results will be published later. 

By the substitution t = B + log x we obtain from Theorems 1 and 2 
immediately the corresponding approximation theorem for the exponential 
sums (1). 

THEOREM 3. Let F G C[A, B], - «> < A < B < + «>, r > 0. Let the 

best approximation of F be defined by 

(9) W - h f , max, 

If A satisfies (4), then 

(10) E*(F; A) = 0(s"'*co(F(r); l/s)) for s -> ~ 

If A satisfies (6), then for each e > 0 

(11) Ef(F; A) = 0(Hsrro>(F^; l/i//(5))) /or s -* ~ , 

wftere i//(s) ft defined by (7) w/r/i log y £ = (>4 - B)/2. 

REMARK. The same results are also valid in the Lp norms, 1 < p < °°, 
if the function ƒ (or F) has an (r - l)st absolutely continuous derivative in 
[a, 1] (or [A, B]) and / ( r ) G Lp(a, 1) (or F ( r ) G Lp(At B)) and if co denotes 
the integral modulus of continuity in Lp. 
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