THE HNN AND GENERALIZED FREE PRODUCT STRUCTURE OF CERTAIN LINEAR GROUPS

BY BENJAMIN FINE

Communicated by Hyman Bass, October 15, 1974

Introduction. If d is a positive square-free integer let I_d be the ring of integers in $Q(\sqrt{-d})$. I_d is a Euclidean domain if d=1,2,3,7,11. The groups $\mathrm{PSL}_2(I_d) = \Gamma_d$ over these Euclidean rings have recently been investigated. Methods for generating presentations as well as actual presentations were given in [2], [3] and [8], while these groups were shown to be describable in terms of generalized free products in [3]. Here we announce several extensions of these results suggested by Karrass and Solitar. We show that the Picard group Γ_1 is decomposable directly as a free product with amalgamated subgroup while the groups Γ_2 , Γ_7 , Γ_{11} are HNN groups in the sense of [5]. The extensions will be used in [4] to show that these groups are SQ-universal.

Throughout we let $\Gamma_d = PSL_2(I_d)$.

The cases d=1,3. In [9] it was shown that the Picard group Γ_1 contains a subgroup of finite index which is a generalized free product, while in [3], Γ_1 was decomposed as a semidirect product with the subgroup above contained as a subgroup of finite index in the normal factor. Also, in [3], Γ_3 was shown to have a subgroup of finite index which is again a free product with amalgamated subgroup. As a strengthening of these we obtain

THEOREM. The Picard group Γ_1 is given directly as a free product of 2 groups G_1 , G_2 with amalgamated subgroup H. G_1 is the free product of the symmetric group Σ_3 and an alternating group A_4 with a 3-cycle amalgamated; while G_2 is D with a 2-cycle amalgamated. The amalgamated subgroup $H \simeq \mathrm{PSL}_2(Z)$ (modular group).

PROOF. The result follows directly from a presentation of the Picard group Γ_1 , given by G. Sansone [7]:

AMS (MOS) subject classifications (1970). Primary 20G20, 20E30; Secondary 20E35.

Key words and phrases. HNN group, generalized free product, free product with amalgamation, SQ-universal.

Copyright © 1975, American Mathematical Society

$$\Gamma_1 \simeq \{A, B, C, D; A^3 = B^2 = C^3 = D^2$$

= $(AC)^2 = (AD)^2 = (BC)^2 = (BD)^2 = 1\}.$

A different decomposition of Γ_1 as a free product with amalgamation was computed by Karrass and Solitar in [6]. This was used to investigate the nilpotent subgroups of Γ_1 .

A similar statement cannot be made for Γ_3 . In fact

Theorem (Karrass and Solitar [6]). The group Γ_3 is indecomposable as a generalized free product.

The proof depends on a technical lemma involving elements of a finite order in a generalized free product.

HNN groups; cases d = 2, 7, 11. A group of the form

$$G = \{t_1 \cdot \cdot \cdot t_n, K, \text{ rel } K, t_i L_i t_i^{-1} = \phi(L_i)\}$$

where K is a group, L_i are subgroups of $K \phi_i$, a collection is isomorphisms $L_i \longrightarrow \phi(L_i)$ is called an HNN group [5]. K is called the base, $(L_i, \phi(L_i))$ associated subgroups and the group generated by t_1, \dots, t_n , the free part.

A subgroup structure theory for HNN groups paralleling that of free products with amalgamations has been developed [1], [5]. Here we state that the groups Γ_2 , Γ_7 , Γ_{11} are HNN groups with free parts of rank 1 and bases which are generalized free products while Γ_1 , Γ_3 are indecomposable as HNN groups.

First we obtain the following

Lemma. The groups Γ_1 , Γ_3 are not HNN groups.

An HNN group must have a free quotient so this follows directly from the even stronger statement:

LEMMA. Γ_1 , Γ_3 have no torsion free quotients.

PROOF. In [3] we showed that Γ_1 , Γ_3 are generated by elements of finite order (either 2 or 3). Therefore in any torsion free quotient these must map on the identity.

Of the remaining 3 groups we can state

THEOREM. The groups Γ_2 , Γ_7 , Γ_{11} are HNN groups with bases K_2 , K_7 , K_{11} and free parts of rank 1. Further in each case the base group is a free product with amalgamated subgroups. In each case the associated subgroups

are modular groups $\simeq \mathrm{PSL}_2(Z)$ while the factors of the bases are particularly accessible (free groups, free abelian groups, finite Fuchsian groups or free products of these); explicitly

- (i) K_2 is G_1*G_2 with H amalgamated; $G_1\simeq Z_2\times Z_2$, $G_2\simeq A_4\simeq PSL(2,3)$ and $H\simeq Z_2$.
- (ii) K_7 is G_1*G_2 with H amalgamated where $G_1\simeq \Sigma_3$, $G_2\simeq \Sigma_3$ and $H\simeq Z_2$.
- (iii) K_{11} is G_1*G_2 with H amalgamated; $G_1\simeq A_4$, $G_2\simeq A_4$ and $H\simeq Z_3$.

The proofs follow from detailed investigations of the presentations of these groups developed in [3] and [8]. The decomposition of these groups as HNN groups with bases as generalized free products are used in [4] to investigate the SQ-universality of these groups.

The non-Euclidean cases. Analogous results are true for those Γ_d whose presentations have been computed over non-Euclidean rings I_d , $d \neq 1, 2, 3, 7, 11$. These are HNN groups with free parts of rank 1, and bases which are generalized free products. However the factors and the general structure of the base becomes increasingly complex. As an example we state

Theorem. The group $\Gamma_5 = \mathrm{PSL}_2(I_5)$ is an HNN group with free part of rank 1 and base K_5 . Further K_5 is the free product of 2 groups G_1 , G_2 with subgroup H amalgamated;

 $G_1 \simeq$ free product of the modular group $\mathrm{PSL}_2(Z)$ and $Z \times Z_3$ with a 3-cycle amalgamated.

 $G_2 \simeq$ free product of $Z_2 \times Z_2 \times Z_2$ and $Z \times Z_2$ with a 2-cycle amalgamated.

$$H \simeq Z \times Z_2$$
.

The single pair of associated subgroups in K_5 , N, M are $\simeq Z \times Z_2$.

The proof follows as in the Euclidean cases by examining the presentation Γ_5 given in [8]. We also note that Γ_5 as well as the other groups over the non-Euclidean rings with class number > 1, whose presentations were computed by Swan in [8], are also HNN groups with free parts of rank 2, and slightly simpler bases. HNN groups with free parts of rank > 1 are SQ-universal [4]. A thorough investigation of the non-Euclidean cases will be done elsewhere.

REFERENCES

- 1. R. G. Burns, Finitely generated subgroups of HNN groups, Canad. J. Math. 25 (1973), 1103-1112.
- P. M. Cohn, A presentation of SL₂ for Euclidean imaginary quadratic number fields, Mathematika 15 (1968), 156-163. MR 38 #4568.
- 3. Benjamin Fine, *The structure of PSL₂(R)*, Ann. of Math. Studies, no. 79, Discontinuous groups and Riemann surfaces, May 1973.
- 4. Benjamin Fine and Marvin Tretkoff, The SQ-universality of certain linear groups (to appear).
- 5. A. Karrass and D. Solitar, Subgroups of HNN groups and groups with one defining relation, Canad. J. Math. 23 (1971), 627-643. MR 46 #260.
 - 6. —, (to appear).
- 7. G. Sansone, I sottogruppe del gruppo di Picard e due teoremi sui gruppi finiti analoghi at teorema del dyck. Rend. Circ. Mat. Palermo 47 (1923), 273.
- 8. R. G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1-77.
- 9. H. V. Waldinger, On the subgroups of the Picard group, Proc. Amer. Math. Soc. 16 (1965), 1373-1378. MR 32 #7647.

DEPARTMENT OF MATHEMATICS, FAIRFIELD UNIVERSITY, FAIRFIELD, CONNECTICUT 06430