
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 81, Number 2, March 1975 

ASYMPTOTIC ANALYSIS OF TRANSPORT PROCESSES 

BY GEORGE C. PAPANICOLAOU1 

ABSTRACT. For a large class of processes called transport pro­
cesses we study in detail a certain asymptotic limit, the diffusion 
limit. Transport processes arise in linear transport theory, learning 
theory, nonlinear oscillations in the presence of noise and other 
problems. We examine closely some examples and give complete 
proofs for the results stated here. 

1. Introduction. The motion of a particle whose velocity undergoes 
jumps of random size at random times constitutes the prototype of a 
transport process. The general structure of transport processes however 
underlies a great variety of problems that arise in mathematical sciences 
and which may have no relation to the moving particle model. Our aim 
here is to study the properties of a large class of transport processes in a 
specific asymptotic limit, the diffusion limit. This limit corresponds roughly 
to the frequency of jumps becoming very large in the particle model. 
We give several examples to illustrate the scope of the asymptotic theory. 
We also give complete proofs for all results stated here. The contents 
are briefly as follows. 

In §2 we outline the probabilistic construction of transport processes. 
The general theory of Markov processes [1], [2], [3] provides the necessary 
existence, uniqueness, and related information, so it is only sketched here. 
We present in detail, however, the connection of transport processes with 
linear transport theory [4]. In §3 we formulate the asymptotic problem 
that concerns us here by introducing a small parameter that corresponds 
to the mean free time between jumps. Diffusion approximations are well 
known in a variety of contexts [4], [5], [6] but for transport processes in 
the generality of our formulation many special features arise and the 
treatment of diverse problems is unified. The special features account for 
the versatility of the asymptotic theory. §4 illustrates this point. We con­
sider a mathematical model of learning theory [7], [8], and show that some 
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asymptotic problems of interest in that theory are special cases within 
the framework of transport processes. Learning models do not, however, 
take full advantage of the available generality. We consider therefore 
a nonlinear oscillator in the presence of noise whose long-time statistical 
behavior is a problem that can also be formulated in the context of trans­
port processes. These examples along with the diffusion otpx approxima­
tion of linear transport theory motivate the formulation we give here. 

In §5 we discuss briefly the connection of the present problem with the 
operator formalism of random evolutions [9 (and references therein)], 
[10], [11] and related problems. §6 contains the statement of a theorem 
characterizing the asymptotic behavior of transport processes in the dif­
fusion limit. The theorem is followed by three corollaries that provide 
related information. In §7 we collect some remarks that help explain the 
nature of the asymptotic theory and its present limitations. We refer here 
to previous works of Kramers [6], Gihman and Gihman and Skorohod 
[12], Khasminskii [13], [22], Kurtz [11], Norman [7] and others concerning 
similar problems. We also indicate how Smoluchovski's asymptotic theory 
[6, 16-18] fits into the present framework. Because of some technical 
difficulties we cannot give a general treatment to this problem at present. 

In §8 we apply the diffusion approximation to some examples one of 
which has been studied by Stroock [14] and Baggett and Stroock [15]. 
§§9-16 contain the proof of the theorem and corollaries of §6. In §9 
we give an outline of the approach we follow so we refer to that section for 
further information. 

It is a pleasure to thank J. B. Keller, W. Kohier, H. P. McKean and 
B. White for several discussions on the problems considered here. 

2. Transport processes. We shall consider a stochastic process 
(Z(r, a9 x9 y)9 Y(r9 a9 x9y)) with values in RnxRm

9 O ^ O ^ T ^ T , which 
is constructed as follows. Let (£(T, a9 x, y), YJ(T, <r, x, y)) denote the 
solution of the deterministic system of ordinary differential equations 

(2.1) ^ = F(T^T)>^T))> ^ = H(r9S(r)9rj(r))9 r > a9 

£((7, a, x9 y) = x9 rj(a9 a9 x9 y) = y. 

We assume that the vector functions F and H are restricted appropriately 
(cf. §6) so that (2.1) has solutions for arbitrarily long times. When con­
venient we shall use the simplified notation f(r)= |(r , <r, x9y)9 r}(r)= 
r}{r9 (X, x9y). Let T^T^C, x9y) be a nonnegative random variable with 
exponential distribution 

(2.2) Pfa >t} = exp ( - £ % ( s , £ (s), rj(s)) ds). 
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Here q(s, x9 y) is a nonnegative bounded function on [0, oo) x Rn X Rm 

and, as the notation indicates, TX depends on a and the starting point 
( * , ƒ ) < * ( « T ) , , ( T ) ) . 

We now define 
X(T, a, x, y) = f (r, a9 X, y)9 

(2 3) 
Y(T, a, x, y) = rç(r, a,x,y), a^r <a + rx. 

At the instant G+TX the F process jumps by a random amount which is 
determined by a probability distribution. We assume that for each ,s^0, 
x e Rn

9 y G Rm and Borel set A in Rm a probability measure TT(S9 X9 y, A) 
is given so that 

P{*i ^ U Y(p + rl9 a, x, y) e A} 
f<r+t 

(2.4) 
= J TT(S, | ( S ) , q(s), A)q(s9 f (s), 7/(s)) 

x exp ( - J «(y, f(y),*?(y)) dy\ ds. 

Given the jump time TX and 7X= F^+Ti , a, x9 y) then the process 
{X9 Y) continues for an interval of length r2 along the trajectories of (2.1) 
with starting values at a+rx equal to X1=^(a+rl9 a9x9y) and Yx. 
The distribution of r2 is 

P{r2 > t) 

(2*5) = exp ( £ + r i + W > S(s, * + *i> *i> Yi)> V(s> * + rl9 Xl9 YJ) ds}. 

In a+rx^T<0+T1+T2 the process (X, 7) is defined by 

X(T9 a9 x9 y) = f (r, <r + rl9 Xl9 Yx)9 
( ' } Y(T, a9 x9 y) = r)(r9 a + rl9 Xl9 Yx). 

At the instant cf+T-^+r^ the Y process jumps again and the construction 
is now continued in the obvious manner. The result is the transport 
process, a pair of processes X and Y which are jointly Markov. The first 
component is continuous and the second undergoes jumps at random 
times. Aside from conditions on F and H that guarantee solutions of 
(2.1) for all times and aside from obvious measurability requirements on 
q(s9 x9 y) and 7T(S9 X9 y9 A) as functions (s9 x9 y) we shall assume that 

(2.7) 0^q(s9x9y)<M< oo. 

With this condition the process (X9 Y) is well defined, that is, with proba­
bility one only finitely many jumps occur in every finite time interval. 

Let us demonstrate this fact [3]. Let 

^ = a{(X(s)9 7(5)); a ^ s < r} 
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i.e., J^£ is the <r-algebra generated by the process (X9 Y) in the interval 
[or, r). A random variable r*^cr is called a Markov (or stopping) time if 
for all r^a the event {T*^T} belongs to SFT

a. The c-algebra that contains 
the events {T*^T}C\A9 A e &™9 r^a, is denoted by &*?. 

For any C>0 we have 

P{ri + r t + • • • + rn < i) 

^ 2s{exp(c(* - 2 ^ ) ) } = exp(C0£{exp(-C2r^ j 

= expCCO^exp^-C^T^IexpC-CrJ | J ^ - } } . 

Here o ,
n_1=a+r1+ \-rn_x and it is a Markov time. From the con­

struction of (X, Y) and with the notation Ar(cn_1)=Zn_1, 7(o,
n_1)= Yn_x 

it follows that 

£ { e x p ( - C r j | j F ^ } 

= J expC-CsMcr^i + s, £(>„_! + s, an_l9 Xn__l9 Yn^)9 

rjio^ + s, an_l9 Xn_l9 Yn_x)) 

X ««pi - J^n-l + Y* £(*n-l + 7, <*n-l, *n-l> *n-l)> 

r}((Tn-l + 7 y ))dy^ds 

£M/C. 

Therefore, 

P{TI + r2 + • • • + rn < t) ^ exp(C0(M/C)n -+ 0, n Î oo, 

if C is chosen so that M\C=.\ say, and it is fixed along with t^.0 as 
nfoo. 

Let/(x, y) be a bounded measurable function on RnxRm and set 

(2.8) u(a9 r, x, ƒ) = E{f(X(r9 or, x9 y)9 Y(r9 <r, x9 y))}. 

From the construction of (X, Y) and the law of total probability we ob­
tain, by conditioning on the first jump time, the relation 

u(a9 r, x, y) = /(l(r), *?(r))exp ( - J <l{*> f (s), rçCO) ds\ 
T 

(2.9) + |Tu(s, r, f (s), zMs, f (S), *?(S), dz)q{s, |(s), ^(s)) 

X e x p f - j ^ ( y , S(y),r](y))dy\ ds. 
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This relation can be viewed as an integral equation for u and the construc­
tion of the Markov process {X9 Y) may proceed in a more analytical 
manner by studying (2.9) [2]. When ƒ(*, y) is differentiable, (2.9) is 
equivalent to the integrodifferential equation 

(2.10) d<a'l'X'y)+Seau{a,r,x,y) = Q, a<r, 
da 

u(T,T,x,y)=f(x,y), 

«^*g(x, J>) s ^0> *> y)—I + H(a9 x, y)— + Q,,9g(x, y), 
ox oy 

Q<r.xg(*> y) = «(^ *> y) I g(x, Z)TT(CT, x, y9 dz) - #(<r, x, y)g(x, y). 

Equation (2.10) is a linear, conservative backward transport equation; 
it is the backward Kolmogorov equation for the process (X, Y) constructed 
above. We employ the notation djdx to denote the gradient operator and 
F times the gradient stands for the inner product of the vector function 
F with the gradient. If P(a, r, x, y, A, B) denotes the solution of (2.10) 
with/(x, y)=XAxB(x> y)> A a n d B a r e Borel sets on Rn and Rm respectively, 
then, 

(2.11) P(a, T, x9y9 A, B) = P{X(r9 <r, x9y)eA9 Y(r, a9 x9y)eB}. 

Let g(s9 x9 y) be a bounded measurable function such that 

@. + &ùg(s,x,y) 

is also bounded and measurable. Define Z(T)=Z(T9 a9x9y; g) by 

(2.12) Z(T) = g(r, X(r)9 Y(T)) - j\d8 + JS?s)g(s, X(s)9 Y(s)) ds. 

From the fact that the expectation (2.8) satisfies (2.10) it follows that 

E{Z(T)} = I P(a9 r, x, y9 dx9 dy)g(r9 x, y) 

( 2 . 1 3 ) - [ds jjp(a9 s9 x, y9 dx9 dy)(d8 + &8)g{s9 x, jO 

= g(o*, x, y)9 Tt>a. 

Using (2.13), it is now easy to verify that Z{T) is a martingale, i.e., 

(2.14) E{Z(T) J f*,} = Z(t)9 a ̂  t£ r. 
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Let 3f be a bounded open set in Rn and let r9 be the first time the process 
X{r) reaches the boundary d@ starting from (x9y)9 xeS) at time a. 
We recall that, by construction, X(r) is continuous. Clearly r9 is a Markov 
time and so is r^AT=min(r^, r). Thus, using (2.14) and the optional 
stopping theorem for martingales, we conclude that if u(o9 T, X9 y) is 
any bounded solution of 

(2.15) du/da + Seau = 0, a < r, 

then, u(sATg, r, X(SKT9)9 Y(SAT&))9 G<:S^T, is a martingale. We have 
therefore 

(2.16) E{u(r A T9, r, X(r A T9), Y(r A rB))} = u(a9 r, x, j) . 

This identity can be rewritten in the form 

(2 m M ( o r ' T '* ' y ) = £ { M ( T ' T ' X ( T ) ' y ( r ) ) ' T = T^ 
K ' } + E{U(T99 T, X(TB), Y{T9))9 T > T9). 

Consider now the boundary value problem 

^ ^ ^ + ^au(^r9x9y) = 09 a<r9 xe®9 yeRm
9 

da 

(2.18) u(T9r,x,y)=f(x9y), xe®9 yeRm
9 

u(o9 r, x, y) = h{a9 x9 y)9 

xed99 y e {z e Rm\F(o9 x9 z) • n(x) > 0}. 

Here ƒ and h are bounded measurable functions and n(x) denotes the unit 
outer normal to d@ at the point x e d£&. We shall denote the set of y 
values in the brackets above by F(o9 x9y) • n(x)>0 for notational con­
venience. From (2.15) and (2.17) it follows that the function u(o9 r, x9y) 
defined by 

u(o9 r, x9 y) = E{f(X(r)9 Y(T))9 r ^ r2) 
( ' } + E{h(r99 X{T2\ Y{T9))9 T > r3}9 

satisfies, in a generalized sense, the boundary value problem (2.18). 
In particular, the boundary values h are assumed at those points (x, y)9 

x e d@9 F-n>09 that are accessible from the interior and h is continuous. 
Throughout, we will consider the boundary value problem (2.18) within 
this generalized sense only, by accepting the representation (2.19) as its 
solution. 

The renewal argument that led to (2.9) from (2.8) can be used here 
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again to show that (2.19) satisfies the integral equation, 

M((T, T, X, y) = %(T <; f^) / ( f ( r ) , *Kr))exp/ - J tfO> 10 ) , f](s)) dsj 

+ x(T > ï®)h(T&, f ( j 9 \ ry(f^)) 

X e x p ( - q(sj(s),rj(s))ds\ 
(2.20) T ^ J° J 

+ u(s9 r, f(s), Z)TT(S, | ( S ) , ??(S), dz)^[(s, f (s), 17(5)). 

x e x p ( - J $(y, f (y), rç(y)) dyj ds. 

Here f9 is the first time | ( r )=f (r , cr, x,j>) reaches the boundary d2 
starting from xe@, y e Rm at time a and %(r^f^) is the characteristic 
function of the set {r^f^} i.e., it is zero for those (cr, x, y) for which 
T > T and one otherwise. The integral equation (2.20) is equivalent to 
(2.18) in the generalized sense discussed above. 

If in (2.19) f(x, y)=0, then, since h(<r, x,y) is an arbitrary bounded 
measurable function, the solution of (2.20) (or (2.18)) yields the joint 
distribution of the exit time TB, the exit position X(r2) and Y{r2). If 
h((ï,x,y)=0, then the solution of (2.20) (or (2.18)) yields the joint 
distribution of (X(T), Y(T)) conditional on not reaching the boundary 
d@ in [a, r]. 

Let us assume that 7r(a, x, y, dz) has a density 0- relative to Lebesgue 
measure on Rm, 

~, x 7r((T, X, y , dz) 
7r((T, x, y , z) = -* -f- '~. 

dz 
Let us also assume that F and G are smooth. We define the linear operator 
JS?* on smooth functions as follows : 

&?f(x, y)=~r (F(r, x, y)f(x, y)) - ~- (H(r, x, y)f(x, y)) 
(2.2i) dx *y 

+ q(r, x, Z)TT(T, X, Z, y)f(x, z) dz - q(r, x, y) ƒ (x, y). • j * 
Here d(Ff)/dx denotes the divergence of the vector function Ff. Clearly, 
JS?* is the formal adjoint of the operator &r defined by (2.10). For smooth 
functions/(s, x,y), g(s, x,y) the following Green's identity holds. 

[/(9, + 2& - g(-d. + &T)f] dy dx ds 
(2.22) J'J'J . . \r Çrç r 

= \ \fg dy dx + \F-nfgdy dS(x) ds. 

file:///F-nfgdy
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Let g(s, x, y) be a bounded smooth function that vanishes identically 
when s is near a9 when s is large, and when x is outside a compact subset of 
Of. For this g and with r=r3l in (2.12) we obtain 

o = «{£*(3. + &M*> * « . r«) *} 

(2.23) = £°£{ (3 , + ^,)g(*, * « , * « ) , ^ ^ r9) ds 

= p(a9 s9x9y; x, y)(d8 + &8)g(s, x, y) dp dx ds. 

Here ƒ?(#, r, x, y; x, y) denotes the formal density of (X(T)9 7(r)) under 
the condition that X(&)=x9 Y(d)=y and T^T9. Under suitable conditions, 
since g is arbitrary, we may deduce from (2.23), by integration by parts, 
that/? satisfies the forward Kolmogorov equation 

{-dT + &?)p((T9 r, x, y; x, y) = 0, r > a, xe Q9 

(2.24) p(a9 a9x9y; x, y) = d(x - x) ô(y - y)9 

p(a,T9x,y;x9y) = 09 xed@9 F(T9 X, y) • n(x) < 0. 

The boundary condition on d2 in (2.24) follows from the fact that 
F{jB9 X(T9)9 Y(T9)) • «(*(T^))=0 i.e., X{r) is moving towards the boun­
dary from the interior at the instant before reaching the boundary. It 
follows immediately from (2.10) that for each fixed (r, x, y) the function 
p(a9 r, x9y; x, y) satisfies the boundary value problem (2.25) which is 
dual to (2.24). 

(dc + ^ff)p(a9T9 x9y;x9y) = 09 a < r, X G ® , 

(2.25) p(r, T, X, y; x, y) = ô(x - x) ô(y - y)9 

p(a9 T, x, y; x, y) = 0, x e d@9 F(T9 X, y) • n{x) ^ 0. 

Clearly p is the density of the measure (2.11) relative to Lebesgue measure 
(assuming that it exists) under the condition T^T9. 

We shall employ the preceding analysis to express probabilistically 
quantities of interest in linear transport theory [4]. 

The basic boundary value problem in linear transport theory is the fol­
lowing. To find a function <f>(a9 r, x, y) satisfying 

(-dT + &?)<f>(o9 T, x, y) + A(r, x, y)<f>(a9 r, x, y) = -B(r9 x, y)9 

T > a9 ice®, 
(2.26) <f>(a9 o9x9y)=f{x9y)9 

-F (r , x, y) • n(x)cf>(a9 r, x, ƒ) = g(r, x, j;), x G 3 0 , 

F(r9 x, ƒ) • n(x) < 0 
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Here, A, 5 , ƒ and g are bounded measurable functions. Usually, x e Rz
9 

yeRs represent the position and velocity respectively of a particle of 
unit mass undergoing collisions. In this case F(T9 X, y)=y and 
H(r9x9y)=0. The solution </> of (2.26) represents the average density 
of particles at x with velocity y at time r, A is the rate of creation or des­
truction of particles and B represents sources or sinks. The quantity — y • 
n(x)<f>(a9 T, x, y)9 x e d@9 y • «(x)<0 is the flux density of particles 
entering the region Of through the boundary d2 and it is a prescribed 
function g(r, x, y) as is the initial particle density f(x9 y) at time a. 
Particles which exit from Of never return and may be thought of as "killed" 
at the boundary. 

The collision process is characterized by the integral and constant terms 
of the operator ^?* given by (2.21). The quantity q(r9 x, y)7r(r9 x, y9 z) dy 
is the differential scattering cross-section i.e., the fraction of particles 
scattered into velocity z from velocity y within dy at time r and location 
x. The quantity q(r9 x, y) is the total scattering cross-section i.e., the frac­
tion of particles scattered into velocity y from all other directions at time 
r and location x. In the context of the transport process (X(T)9 Y(T)) 
constructed earlier, q represents the collision frequency (because of (2.2)) 
and 7T the jump measure. 

When H is not identically equal to zero it represents an external force 
field. When Fis a general function, not identically equal to y9 it represents 
the local group velocity of wave packets and is therefore appropriate to 
transport theory for wave processes. 

To give a probabilistic representation to the solution of (2.26), let 
h{x9 y) be a bounded measurable function and set 

(2.27) ^((T, r) = <f>((X9 r, x9 y)h(x9 y) dx dy. 

Knowledge of <f>h for arbitrary h is equivalent to knowing <f>. However, 
<f>h can be constructed under very general conditions in which case (2.26) 
is satisfied only in a generalized sense. This is a typical advantage of proba­
bilistic representations. Let/^ be defined by 

ph(a9 T, x, y) 

(2-28) = £ j e x p IJp^k X(s)9 Y(s)) ds} h(X(r)9 Y(r)), r ^ r^j. 

Then, 

<f>h(o9 T) = Ph(s, T, x, y)B(s9 x, y) dy dx ds 

(2.29) + f \ph(a, T, x, y)f(x, y) dy dx 

+ g(s, x, y)ph(s9 r, x, y) dy dS(x) ds. 
J a Jd® JF'TKO 
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One can formally verify that (2.29) gives a representation of the solution 
of (2.26) via (2.27). For the verification, the identity (2.22) is employed 
as well as a computation analogous to the one that led to the represen­
tation (2.19) for (2.18). 

In general, (2.29) is taken as the solution of (2.26) via (2.27). This is 
the generalized sense in which we interpret (2.26). The question of exist­
ence and uniqueness for the basic problem of transport theory is thus 
settled at least in the sense explained. The representation (2.29) provides, 
in addition, a tool for studying by probabilistic methods asymptotic 
problems that arise in linear transport theory. 

Let us also view the process (X, Y) in the context of stochastic differential 
equations. X(T, or, x9 y) satisfies the equation 

(2.30) ^ = F(T,X(T),Y(T)), T > < 7 , X(o,o,x,y) = x. 
ar 

However, the process Y(j) is not given independently of X. If we regard 
Y(T) as the random coefficients in the stochastic equation (2.30), then, 
in the present context, the coefficients depend, in general, on the solution 
since H, q and TT may depend on x. We could write down a generalized 
equation for Y [12] but we prefer to work directly with the backward 
Kolmogorov equation (2.10). The dependence of the coefficients Y(T) 
on the solution X(T) is reflected in the x-dependence of the operator Q 
in (2.10) and can be interpreted as feedback i.e., the solution affects the 
statistical properties of the random coefficients. 

3. Asymptotic problems. There are very few problems in linear trans­
port theory that can be solved analytically [19]. These problems are 
restricted to spatially homogeneous collision operators and, essentially, 
half-space boundary value problems. The necessity for approximation 
methods is therefore obvious. In the context of the more general problems 
(2.10), (2.18), (2.26) or the stochastic equation formulation (2.30), the 
necessity for approximations is felt even more acutely. We shall focus 
here on the diffusion approximation which is frequently quite effective. 
Other approximations, such as the discrete ordinate method, are con­
sidered in [4], [20]. Let us now describe the set-up for the diffusion approxi­
mation. 

Let £>0 denote a small parameter and suppose that the collision fre­
quency is q/e2 rather than q; i.e., let e2 denote the order of magnitude of the 
time between jumps (or collisions) of Y, Under reasonable conditions, 
speeding up of the jumps will lead to a uniform equilibrium state. In 
order to allow for some nontrivial space and time dependence we also 
speed up the velocity field F and the force field H by replacing them by 
Fje and Hje respectively. It turns out that the speeding up of the velocity 
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field cannot be done in an arbitrary manner. F must be appropriately 
"centered" or else the process degenerates in the limit e->0. By centering 
we mean that the average value of F with respect to the local equilibrium 
distribution of Y (cf. §6 for precise definitions) should be approximately 
zero. 

With these general remarks in mind we state the transport problem 
whose asymptotic limit as ej,0 will be studied. The transport process 
(X{e\r9a,x,y)9 F(e)(r, <r, x,j)) is defined as the Markov process with 
backward equation 

o. 1 u(« ° v \du{e)(o,T,x,y) q(o, x, y) 

O.I) + ; H r ? ' x ^ j — T y — + e2 

xju «V, r, x, zMa, x, y, dz) - q{°> *» y) u{s\a9 r, x, y) = 0, 
e2 

o < r, 
w(£)(r,r,x, y)=f(x,y), 
u{e)(a, T, x, y) = E{/(Z(e)(r, a, x, y), Y(€)(r, a, x, y))}. 

Note that we have introduced the additional term G in the velocity field 
and we have allowed F, G and H to depend on the "fast" time scale 
cr/e2 (or r/e2). The reason for allowing explicit dependence on the fast time 
comes from the stochastic differential equation interpretation. 

The process Ar(£)(r)=Ar(e)(T, a, x,y) satisfies the stochastic differential 
equation 

^ " ( T ) = 1 Fir, rle\ XM(r), Yh\r)) 

(3.2) 
dr e 

+ G(r,T/£
2 ,X ( f i ,(T),y ( e )(r)), T>0, 

X{e\a9 a, x, y) = x. 

Since Y{e) depends on Xu\ (3.2) is not a closed system of equations as 
we remarked in §2. The field Fis centered and therefore, roughly, the rate 
of change of Xie) is 0(1). On the other hand the rate of change of Y(s) is, 
roughly, of the order of magnitude of the jump frequency i.e. 0(l/e2). 
Thus, the scaling we have introduced distinguishes Xu) as the slowly 
varying and Yie) as the rapidly varying part of the process (X{e\ Yie)) 
Furthermore, since Y{e) is rapidly varying, we expect that it ought to be 
possible to handle rapid variations of F and G and this leads to the ex­
plicit fast-time dependence in (3.2). If Y{e) does not depend on X{B) then 
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the analysis of (3.2) in the limit e[0 has been carried out in [21] wherein 
additional references are given to both theoretical work and to specific 
applications. In the context of Itô equations a problem similar to (3.2) 
(cf. §7, Remark 2) has been investigated by Khasminskii [22]. Further 
information and examples of asymptotic results for processes with fast 
and slow components are given in [23]. 

The results stated in §6 tell us that, under appropriate hypotheses, 
Xie) converges weakly as e[0 to a diffusion Markov process whose genera­
tor can be computed explicitly. This is the diffusion approximation. Note 
that for £>0 neither X{e) nor Yis) are Markov separately but Xie) becomes 
Markov in the limit e[0. 

Let us consider the scaled version of the boundary value problem 
(2.26). It is customary in transport theory to redefine g so that the boun­
dary condition 

- F ( T , x, y) - n(x)<f>(cr, r , x,y ) = g{r9 x, y) 

is replaced by 

<£((T, r, x, y) = g(r, x, y)9 xed@9 r ^ a, 

F(r9x9y)-n(x)<0. 

The problem is then to analyze </>{e)(<r9 r, x9 y) as e JO where 

d^\a9r9x9y) 

dr 

+ jz ( i H(r, r/62, x, y)^\a9 r, x9 ƒ)) 

- - q(r, x, Z)TT(T9 X9 Z9 y)</>{e)(o9 r, x9 z) dz 

(3.3) \ 
+ i <1(T, x, y)<l>{eX<r, T9 x9 y) 

s 

- A(T9 X9 y)<i>(e\a9 r, x9 y) = B(T, X, y)9 

r > a, i ce® 

<f>{e\a9 <r, x9 y) = f(x9 y)9 xe9)9 

<f>{t\a9 r, x9 y) = g(r9 x9 y)9 x e d@9 

^ F(T9 r/e2, x9 y) + G(r, r/e\ x9 y)^ • n(x) < 0. 



342 G. C. PAPANICOLAOU [March 

Let h(x, y) be a bounded measurable function and define ffl and p^ 
as follows: 

fâXa, T) = |U(fi)(a, r, x, y)h(x, y) dy dx, 

(3.4) tâXo, r, x, y) = Ejexp (£^ ( s , X(e)(s), Y(e)(s)) ds) 

X ^ ( £ , ( T ) J ( £ ) ( T ) ) 5 T ^ T J 

The representation of <f>{e) via ^e ) , analogous to (2.29), now takes the form 
r 

tâ\o,T) = f f f Pi' '0» r, x, y)B(s, x, y) dy dx ds 

+ 1 1 P h X a > T > x > y ) f ( x > y ) d y d x 

(3.5) * 

-SI / [M^'Hi^m 
a 39 (F/e+G)-n<0 

X n(x)g(s, x, y) • /#°(s, r, x, y) dy dS(x) ds. 
From this representation it might appear that the weak convergence 

results of §6 yield the relevant results for <f>u\ This however is only par­
tially true because the third term on the right of (3.5) leads to boundary 
layers near d@. The analysis of the boundary layers requires separate 
considerations which are not given here (see also Remark 3 of §7). 

4. Learning theory and other examples. An interesting class of trans­
port processes is obtained from the following mathematical model in 
learning theory [7], [8]. Let (S£9 3ÏÏ) and (<&, s/) be measurable spaces. 
We consider a subject undergoing observation by an experimenter and 
suppose temporarily that the times of observation are multiples of a fixed 
time unit. At the time of the kth observation the state of the subject is a 
random variable Xk with values in 9C whereas the response of the subject, 
as observed by the experimenter, is a random variable Yk with values in 
<Sf. We assume that functions Pk(A; X), fc^O, on jtfxS? are given such 
that for fixed l e f they are probability measures on s/ and for fixed 
A e s/ they are âiï measurable functions of X. We also assume that 
measurable functions vk(X9 Y), fc^O, on SCxW are given. The learning 
model for the subject under observation is now as follows. 

Given that the state of the subject at the A:th observation Ar
fc=Zthen, 

(4.1) P{Yk E A | Xk = X} = Pk(A; X). 
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That is, Pk(A; X) is the conditional probability of observing the subject 
in A given the state of the subject is X. Moreover, given that Yk= Y 
and Xk=Xwe set 

(4.2) Xk+1 = vk(X, Y) 

i.e., the state of the subiect at the time of the A:+lst observation is a 
given function of the state X and the observation Y at time k. We assume 
that the distribution of X0 is also given. The process (Xk, Yk), k^.0, 
so constructed is evidently a discrete time Markov process on 3PX&. 
A basic question is: for given Pk and vk what is the behavior of Xk, the 
state of the subject, for k large? One may interpret vk as the penalty or 
reward that the experimenter offers the subject in order to influence 
its future state. Similarly, the dependence of Pk on X indicates that the 
response of the subject is related to its state although in a stochastic 
manner. 

Naturally, in order to obtain a rich asymptotic theory one must make 
some reasonable assumptions about the spaces #*, & and Pk and vk. 
From the point of view of a literal state-response interpretation of the 
process (Xk9 Yk), it may well be that S* and & should most appropriately 
be chosen as finite sets. However, we shall interpret the learning model 
in a broader sense whereby one has a feedback mechanism so that some 
components of the process can influence the evolution of the remaining 
components. From this statement the connection with transport processes 
should be apparent. Let us make this connection somewhat more explicit. 

Suppose that iF is the Euclidean space Rn but let <3f be arbitrary. In 
the context of the broader interpretation of the learning model there is 
little reason to maintain the time discrete. In continuous time the learning 
process ( I ( T ) , Y(T)) is constructed in exactly the way the transport process 
was constructed in §2 except that now H=0 in which case the nature of 
the space <3f becomes irrelevant (cf. §6). Clearly the velocity field F(r, X, Y) 
is the continuous analog of vk(X, Y)—X i.e., the difference Xk+1—Xk 

goes over to a derivative. The probability measure Pk(A9 X) is replaced by 
the collision operator (2.13) characterized by q(r, X, Y) and 7T(T, X, Y, A) 
(note, however, we also allow Y-dependence). Continuous time learning 
processes are therefore special cases of transport processes. Note that it is 
important for learning models that (i) F(T, X, Y) depend on Y as indi­
cated, or else no control is effected and (ii) q(r, X, Y) and 7r(r, X, Y, A) 
depend on X or else the subject responds with the same probabilistic 
mechanism no matter what its state is. 

Let us consider the question about the long-time behavior of the state 
X(r) for the continuous time learning process. In order to make this ques­
tion meaningful one must interpret the words "long time" appropriately. 
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This is conveniently done by introducing a small parameter e>0 in the 
following manner. 

Consider the process (X(e\r, or, x, y), Fu)(r, a, x, y)) with backward 
equation 

duu)(a, T, x, y) du{e\a, r, x, y) q(o, x, y) 
h 0(cr, x, y) + 

da ox e 

(4.2) 
x u{e\o, r, x, 2)77(0*, x, j>, dz) 

; w V , T, x, y) = 0, (T < T, 
e 

uu\r,T9x,y)=f(x9y), 

and corresponding stochastic equations for X{e) 

(4.3) — - ^ = G(r,XM(r),Yu\r)), r > a, XM(a, a, x, y) = x. 
ar 

The asymptotic analysis of Xie)(r) as ejO corresponds to slow learning with 
large drift [7], e being a measure of the speed of learning. In §6 we show 
that, for general G, X(e\r) tends to the deterministic trajectory Xm{r) 
which is the solution of an appropriate system of deterministic ordinary 
differential equations. One then investigates the asymptotic behavior of 
the deviation process [X{e)(r)—X(0)(r)]le. Corollary 1 of §6 gives the 
asymptotic behavior of this process. 

When G in (4.3) is centered i.e., behaves like the F of (3.1), then X{0)(T) 

will be identically equal to the starting point x. This is called slow learning 
with small drift [7]. To obtain a more interesting asymptotic behavior 
we rescale the process Z(e)(r) so that it satisfies (3.2) with F centered and 
taking the place of G above (the G in (3.2) is now omitted to avoid con­
fusion). The asymptotic behavior in this case is given by the theorem of §6. 
Thus, the asymptotic analysis of slow learning with both large and small 
drift follows from the asymptotic theory of transport processes. 

We have not yet explained the role of the explicit dependence of F and 
G and H on r/e2 in (3.1) as it did not arise naturally in the learning models 
above. We give below an example that shows how problems with explicit 
fast-time dependence arise. 

Consider a harmonic oscillator with randomly perturbed frequency 

^ + o>2[l + eg(K0)W0 = 0) x(0) = x, ^ > 
at at 

Here x(t) denotes the position of the oscillator, co is its angular frequency 
when e=0, e is a small parameter characterizing the size of the fluctuations 
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and y(t) is a process that depends on x(t) and dx{f)\dt in a manner that is 
specified later. Because of the dependence of y on x and dx/dt, (4.4) is a 
nonlinear stochastic ordinary differential equation. Let E(t) denote the 
energy of the oscillator 

(4.5) E(t) = i[(dx(t)/dt)2 + coV(0L 

and define 6{t) by 

(4.6) (dxiOldtftcoxit)]-1 = -tan(twf + 6(0/2). 

By direct computation we find that E(t) and 0(t) satisfy the equations 

1 dE{i) 

E dt 
= eœg(y(t))sm(2œt + 0(0), 

(4.7) ^ = ecog(y(t))[l + œs(2œt + 0(0)], t > 0, 
dt 

E(0) = E9 0(0) = 0, 

where E and 0 are related to x and x via (4.5) and (4.6). Let log E(t)=R(t) 
and assume that y (t) is a jump process that depends on x(t) and dx{f)\dt 
through R(t). 

Let T=e2t and set 

* ( 8 ) ( T ) = R(TI*), 0 U ) (T) = 0(T/S*), y fi)(r) = y(jle*)-

then from (4.7) we obtain 

dRu\r) 
^- £ g(y W (r)>inP?+f l W (r) ) , 
dr e \ e' J 

(4.8) rf0(e)(r) co -f)i 
^ = ^ g(^ ( eV))[l + c o s ( ^ + e < ^ ) ) ] , r > 0 , 

R{e\0) = log £ , 0(8,(O) = 0. 

We let X (c)(r)=(^ (e)(r),0 (e)(r)) and yU )(r)=y e )(r) . In this notation 
(4.8) assumes the form (3.2) with G=0 and Fir/e2, R(e\ 0(e), y{e)) identified 
in the obvious manner. To specifiy the problem completely we must pre­
scribe the q and the TT that enter the backward equation (3.1), and, of 
course, the state space of y{e). Suppose thaty e ) takes values in the unit 
circle S1 and g is a bounded function on S1 so that, when e is small, the 
frequency in (4.4) does not become negative. If we also assume that q 
depends on R and a only, and TT depends on R, y and a but not on 0 
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then, the backward equation for the process (JR , 0 , / ) is 
du{t\a, T, R, 0, y) , a> _,^,_J2coo , n\du l t\a, r, R, 0, y) 

I 
(2(oo , n\~\duM(o,r,R,d,y) 

„ ^ « H T ^ a« 
(49) +-g(,)[l+cos(- + e)J-

+ ^ V ^ f / V , T, K, 6, z)n(a, R, y, dz) 
s2 Js1 

_^Mu^a>TiR>e,y) = Q, a<r, 
€ 

uu\r9T9R9d9y)=f(R9d9y)9 ReR\ 0 G [0, 2TT), y e S\ 

The example we have just presented shows how the fast time r/e2 

enters explicitly into the equations (4.8). Actually, the change of variables 
that led from (4.4) to (4.8) plays also an essential role because it trans­
forms a problem with noncentered F to one with centered F. We shall raturn 
to this example in §8 where we apply the diffusion approximation. 

5. Random evolution. The purpose of this section is to indicate that 
the asymptotic analysis of (3.1) is, in fact, a special case of a more general 
class of problems called random evolutions and also, to refer to some 
relevant literature. We purposely omit detailed descriptions because these 
more general problems will not concern us here. 

Let (&9 s/) be a measurable space and 3Tl9 2£2 be Banach spaces 
such that 2£2 is continuously imbedded into 9CX. Let V(T9 t9 y)9 r^O, 
t^09y eW, be bounded linear operators from 3£2 to XX strongly meas­
urable as functions of their arguments. Let â8({8/9 3C-Ù be the space of 
bounded measurable functions on <& with values in 3CX and let Q(r)9 r^O, 
be a bounded linear operator on 3$(%/9 SC^). Let e>0 be a parameter and 
consider the following Cauchy problem for w(e)(cr, r,y): 

duu\a9r9y) , 1 „ / a \ (f) 

(5.1) 
+ 

e 
+ -2Q(°)u{e\(T,T9y) = 09 a<r9 

u{eXT9T9y)=f{y)e<%(W93e2). 
It is, of course, an important problem to find sufficient conditions so that 
(5.1) is a well-posed problem. In the notation of §3, the Cauchy problem 

duie\a9 T, x, y) t\v(_o \ duie)(a9 r, x9 y) t q{o9 x, y) 

X uie'(o9r, x, Z)TT((T, x, y9 dz) - *V~'J' J'uKt\o9r, x, y) = 0, a < r, (5.2) ^ f€-u)/r ^ _ ^ v „ ^ g(cy,x,y)..(«), 

M(E)(r, r, x, ƒ) = / ( x , j ) , 
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is a special case of (3.1) and provides a concrete example of the abstract 
problem (5.1) for which well posedness questions are settled easily.2 

The complete identification of (5.2) as an example of (5.1) is as follows. 
3CX is the space of bounded continuous functions on Rn with the sup norm, 
3?2 is the space of functions with bounded continuous derivatives and nor-
med by the sum of the sup norm of the functions and its derivatives, 
V(T, t9y) are the vector fields F(T, t, x,y)(d/dx), %J can be an arbitrary 
measurable space and Q(r) is the collision operator. 

When F is a general operator and not the vector field F(djdx) then one 
cannot interpret (5.1) as the backward equation of a process (X{e\ Y{e)). 
To find the appropriate stochastic problem associated with (5.1) we con­
sider again the concrete problem (5.2). Let f(x, y) be a continuously dif­
ferentiate function of x e Rn and a bounded measurable function of 
yeW. Define a linear operator U{B)(T, a) acting on such functions as 
follows : 

(5.3) t/(e)(cr, r)f(x9y) = f(X{'\r, a, x9y\ 7 (e )(r, <r, x,y)). 

Let YQ'\T, <s9y\x) be the Markov process on %/ with backward equation 

du{
0
e)(a9T,y;x) 1 f (e) 

+ ~2 <l(<y, *, y) u0 (a, r, z; X)TT(O9 x, y9 dz) 

(5.4) - (l/fi2)4(tf, x, y)u(oe\<r, T, y; x) = 0, a < r, 

WO8)(T,T, y;x) = f(x9 y)9 

u{
0

e)(a9 r, y; x) = E{f(Y^\r9 a, y; x)9 x)}. 

Let V(T9 t) denote the operator defined by 

(5.5) V(T, t)f(x, y) = F(r, t9 x9 y)(df(x9 y)/dx). 

It is not difficult to verify that U{B)(a9 r) satisfies, in an appropriate sense,3 

the relations 

V(\a9 r) = U{
0'Xo9 T) + i |V>(<r, s)v(s9 ^ U{

0*\s9 r) ds; 

U{<\o9 T) = U{
0

e\a9 r) + i [V<fi)(cr, s)V (s, ^j U{e\s9 r) ds 

where 

(5.7) iftXa, r)ƒ(x, y) = ƒ(Y{
0

£\r9 a9 x9 y)9 x). 

2 In general one assumes that (5.1) is well posed and has the necessary properties for 
the asymptotic analysis. 

8 See equations (10.23) and (10.24). 
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In the abstract set-up we begin with the random operators U{e) and C/oe) 

satisfying the functional equations (5.6) (under appropriate hypotheses). 
As in the concrete example it is not hard to show that 

(5.8) u{e\<x9 r, y) = E{U{'X<r9 r)f(y)} 

and this provides the stochastic background for (5.1). One reason why 
one wants to investigate (5.6) or (5.1) is that problems of this sort arise in 
stochastic models in Quantum physics [24], [25 and references therein]. 
The derivation of master equations for stochastic Quantum problems 
corresponds to the diffusion limit for the "Classical" problems (5.2) 
that we consider here. 

The study of random evolutions, their asymptotic analysis in particular, 
has received considerable attention recently and is indeed a subject that 
has potentially many applications. Starting with the work of Griego and 
Hersh [26] several works followed which considered various aspects of 
the Cauchy problem (5.1). We refer to the works of Hersh [9], Pinsky [10] 
and Kurtz [11] for additional information and references. 

6. The diffusion approximation. In the construction of transport 
processes in §2 the Y component of the process was itw-valued. In the 
theorem we state here and its proof we require Y to take values in a 
complete separable and compact metric space S. The compactness is a 
technical restriction that excludes some interesting examples and is 
probably unnecessary. For this reason it was not mentioned in §§2 and 3. 
The other properties of S are required so that the process has a nice path 
structure [3]. 

Without a differentiate structure on S we cannot have force fields H. 
Thus, in the remainder we will, assume that H=0. In Remark 1 of §7 
we give the form of the results when S is a diiferentiable manifold and H 
is not zero. 

On RnxS we consider the Markov process (X{e)(r9 a, x, y)9 

7 ( I J )(T, a, x, y)) with backward equation 

du{e\a, T, x9 y) „MM, „ v lA _ n ,, . 
h <&ff u (<r, r, x, y) = 0, or < r, 

da 
u{eXr9T,x,y)=f(x9y)9 

uu)(c9 r, x, y) = E{f(X{*Xr9 a, x9 y)9 Y{*\T9 a, x9 y))} 
]dg(x9y) (6.1) ^g(x9 y) = \^F(O9 ^9x9y}+G(o9^9x9 y}J 

dx 

+1 Q«.xg(x, y)> 
e 

xè(*> y) = tffo x> y) g(x> *M*» *> y>dz) - q(<r> *> y)g(*> y)* 
Js 
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Here f(x9 y) is a differentiate function of x e Rn and bounded measurable 
in y E S. We assume that the vector function F(p9 t, x, y) satisfies the 
following conditions : 

(i) F(a9t9 x, y) is a measurable function of its arguments, 

(ii) |F,(<r, t9 x, y)\ ^ C(l + |x|), 

(iii) imidx^o, t9 x, y)\ ^ C, 

(6.2) (iv) WFjdx, dxk)(a919 x9 y)\ <: C(l + |x|«), 

I 33F,((T, t9 x9y)\^ „ A f . lax I d%{a91, x9 y) 

dxj dxk dxl 
Û C(l + M"), 

i = 1, 2, 

dXj dxh dxi dx. £ C(l + \x\"), 

, n9 j9 k9l9m = 0,1, 2, ,n . 

Here and in the sequel we denote a (or r) by x0 when convenient; C stands 
for a constant and we adopt throughout the convention that constants, 
even different constants, are all denoted by the same symbol C. We denote 
by a a nonnegative integer and by | | the Euclidean norm of vectors in 
Rn or absolute value of scalars. The vector function G(j919 x9 y) satisfies 
the same hypotheses (6.2) as F. 

The collision frequency q(a9 x9 y) and the scattering measure ir{a9 x9 y, A) 
are assumed to satisfy the following hypotheses: 

(i) q(a9 x9 y) and TT{O9 X9 y9 A), A a Borel set in S9 are meas­
urable functions of a ^ 0, x e Rn

9 and y e S, 

M 
0 ^ q(a9 x9 y) ^ M < oo, 

ox4 

d2q 
dxi dx 

(<*, x> y) 

l + \x\ 

^ M ( l + |x|a), ij = 0 ,1, 2, • ••,!! . 

(6.3) (iii) Let (dir(a9 x9 y9 A))ldXi denote the signed measure ob­
tained by differentiating IT with respect to xt. Let 
\dir\dXi\ (p9 x9 y9 A) denote the total variation of this 
signed measure on A. We assume 

\dirldXi\ (<r, x, y, A) ^ M/(l + |x|), 
a27 

(<r, x, y9 A) ^ M(l + |x|a), i,j = 0,1, 2, • • -, n. 
| OXi OXj \ 

Here M is a constant independent of a9 x9y9 A9 i and ƒ 
Let P0(t9y9 A\a9x) denote the solution of the /-homogeneous back­

ward equation 

9P0(r, y9A\a9 x)/dt = Q..M, y,A;a9 x), t > 0, 

Pv(09y9A;a9x) = XA(y)> 
(6.4) 

file:///dir/dXi/
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A a Borel set in S. Here %A(y) denotes the characteristic function of the 
set A and cr^O, x G Rn are merely parameters. Let Y0(t9 y; or, x) denote 
the jump Markov process on S with backward equation (6.4) that is, 

(6.5) P{Y0(t9y;a9x)eA}=P0(t9y9A;<r9x)9 t^O. 

This process is called the frozen collision process because it coincides with 
(Xie\ Y{e)) of (6.1) when the drift is removed; that is, the spatial coordi­
nate does not change with time, the slow time a is frozen and /=T/S 2 . 

We require the following hypotheses concerning P0. 
(i) There exists a probability measure P(A; a9x) on the Borel sets 

depending on xe Rn and a^O such that for any bounded measurable 
function f(y) 

(6.6) (p(d^;a9x)Q<rJ'(0 « 0. 

(ii) Let [ÂQ denote the signed measure 

(6.7) ixQ(t9y9A;a9x) = P0(t9y9 A; a9x) - P(A; x)9 t^ 0. 

We assume that there is a monotonically decreasing function p{t)9 r^O, 
such that for any function f(x9y) with \f(x9y)\^C(l + \x\*)9 a some non-
negative integer, 

(6.8) L0(t9 y9 dÇ; a9 x)f(x9 £) ̂  P(t)C(l + \x\*)9 

and 

(6.9) f V / 5(s) ds < oo. 
Jo 

From (6.6) it follows that P(A; a9 x) is an invariant measure for Y0 

that is, 

(6.10) (p(d£; a9 x)P0(t9 £, A; or, x) = P(A; a9 x), t ^ 0, 

and from (6.8) it follows that it is unique and P0 tends to it sufficiently 
rapidly as f too. For each or^O and xeRn the condition (6.8) can be 
translated into a condition on the spectrum of the collision operator 
QatX. From (6.6) it follows that zero belongs to the spectrum. 

In §3 we described in rough terms the centering condition that the vector 
field Fmust satisfy. We now state this condition precisely. We assume that 

(6.11) F(T, 5, x9 y)P(dy;r9 x)ds\^ - ^ (1 + |x|), t910 ^ 0. 
I Jto J I 1 "T" * 

This is the centering condition. When F(j9 s9 x9 y) is independent of s9 
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(6.11) is replaced by 

351 

ƒ F(r9x9y)P(dy;x) = 0. 

This form justifies the terminology we use. Along with (6.11), we need 
also to assume that 

(6.12) \— \F(T,s9x9y)P(dy;r9x)ds 
| OXi Jto J 

^C9 

t9t0^09 i = 0,1, • • • , n. 

This hypothesis is compatible with the properties of P that follow from 
(6.3) and (6.6) as the results of §10 show. 

The theorem to be stated shortly tells us that Xis)(r9 a, x, y) converges 
to a diffusion Markov process as e-^O, O^a^r^T. We define now the 
drift vector (bj(r9 x)) and the diffusion matrix (a^(r, x)), / , y = l , • • • , n9 

of the limiting diffusion process. 
I rto+t r rto+t r 

(613) a%3(jy * ) = h t m "J J J J p ( < d y ; r> x^°^s - °\>y>dz> T>*) 
X F%T9 a, x, y)Fj(r, s9 x9 z) da ds. 

i Cto+t r rs r n 
b\r, x) = lim -\ P(dy; r, x) Y F \ r , a, x, y) 

Uao t Jto J JtoJ i=x 

X (3/3xt)[iUo(5 — o9 y9 dz; T, x)Fi(r9 s9 x9 z)] da ds 
l Çto+t r 

lim - P(dy ; r, x)G3(r9 s9 x9 y) ds, 
tïoo t Jto J 

0 ^ T ^ T, t0 ^ 0, xeRn
9 i9j = 1, 2, • 

(6.14) 

+ 
n. 

We require that the limits (6.13) and (6.14) be approached sufficiently 
rapidly and uniformly in x and t0. The precise manner of approach is 
specified by the following inequalities. 

(6.15) 
-J J J \P(dy;T,x)/^(\s-a\,y,dz;r,x) 

X F\T, a, x, y)F\r, s, x, z) da ds - au(r, x) 

l'SriïtH^' T' x) ? F(T' °'x'y) 

C(l + 1*1°) 
i + f • 

(6.16) x T~ L"o(s - o, y, dz; r, X)F1(T, s, x, z)] da ds 
ox( 

C(l + 1*1) 1 Ct»+t C 
+ J J P ( d y ; T' X)G'(T' S' X'

 y) ds ~ b'(T' 1 + t 
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When F(r9 s, x9y) and G(r, s9 x9y) are independent of s then (6.13) 
and (6.14) simplify to 

(6.i7) aiJ(T'*)= 2 p(dy; T> *)J /^ s> y>dz; T > * ) d s 

X F ( r , x, j ) P ( r , x, z), 

fc'(T> x) = ƒƒ ̂  T'x) 2 F(r'*•y) h 
(6.18) x J p0(s, y9 dz; r, x) dsF*(r9 x, z) 

+ f^;T,x)G'(T,x,)0. 

Note that the s integral in (6.17) and (6.18) is convergent in view of (6.8) 
and (6.9). 

Let Ckt*(Rn), with k and a nonnegative integers, denote the collection 
of functions f(x) on jRn with continuous partial derivatives with respect 
to x up to order k inclusive, such that there is a nonnegative integer a 
and 

dkf(x9y) 
(6.19) ^ C(l + |x|«), 

\dxkldxl2'-dxk
n
n\ 

ki nonnegative integers, kx+- • -+kn=k. On C2'*(Rn) we define the second 
order, possibly degenerate, elliptic partial differential operator ££a by 

(6.20) *•«<*>=2 Jj (a>x) ^ . + S ' <*•x) "&7 • 
a ^ 0, x G Rw. 

From (6.13) it follows that (a^tf, x)) is nonnegative definite. We do not 
assume that it is positive definite. JSfff is referred to as the infinitesimal 
generator of the limiting diffusion Markov process. 

As in [21] we require that the final value problem 

(6.21) du(a:T9X) + &M°,T9x) = 09 a<r, u ( r , T , x ) = / ( x ) e C 2 ' a , 
da 

has a unique solution w(<r, T, X) which is sufficiently regular when ƒ is 
sufficiently regular. In this respect the method of analysis of (6.1) that we 
follow here is similar to the one Khinchine employed in [5] in establishing 
diffusion approximations. The results we need about (6.21) are summarized 
in Lemma 13.1. With hypotheses (6.22) stated below and Itô's calculus 
[12], [29], these results can be easily verified. However, the assumption 
that a{j9 x) has a smooth square root is sometimes difficult to verify from 
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the assumptions on F, G, TT and q. In that case one must employ the theory 
of Oleinik [27], [28] where (6.22), (i) is not required and the remaining 
hypotheses below are suitably modified. 

(i) a"(r,x) = J c i f c ( M y V , x ) , 

(ii) |c"(r, x)| ^ C(l + |x|), \b\r9 x)\ <: C(l + |x|), 

| db\r9 x) 1 
(6.22) 

(iii) 

(iv) 

fa* 
^ C , 

dx* 
^ C , 

ij = 1, 2, • • • , n, fe = 0, 1, 2, • • •, n, 

C"'(T, X) G C4'a(lT+1), bj(r, x) e C*'XRn+\ 

i9j = 1, 2, • • • , n, a ^ 0 integer. 

Note the similarity of (6.22) with (6.2). 
We state now the theorem characterizing the limiting behavior of X(t) 

as e[0. 

THEOREM. Let (Xie)(r9 a, x,y), YU)(T, e9 x,y)) be the Markov process 
on RnxS with backward equation (6.1). Then X{e) converges weakly as 
£—•0, O^t f^r^r , to a diffusion Markov process on Rn with generator 
£ea given by (6.20). 

Furthermore, let f(x,y) be bounded measurable and in C*,a(Rn), a^O, 
as a function ofx and let u(a9 r, x) denote the solution of 

du(o, r, x)lda + &au(p9 r, x) = 0, 0 ^ a < r ^ T, 

w(r, T, x) = ƒ(*; r) = j ƒ(*, y ) / 5 ^ ; r, x). 

TZrew, fAere ^xw/5 aw â > a t̂/cA that for 0^o*<r^77 

|u(fi)(or> T, x, y) - u(cr,T, x)| 
(6.24) lim sup • 

eio x.y 
= 0. 

1 + |x|* 

Let ûie)(a9 T, x, ƒ) denote the solution of (6.1) with f=f{x\ r). 7%e«, /or 

(6.25) | ö(e,(a, r, x, y) - w(cr, r, x)| ^ *1/4C(1 + |x|«). 

Here C is a constant that depends on T, ƒ and other quantities but does 
not depend on e. Note that we have O<T in order for (6.24) to hold. This 
nonuniformity constitutes an initial layer for the singular perturbation 
problem (6.1). 

Suppose that Fin (6.1) is identically zero. Then according to the above 
theorem X(t\r9a9x9y) converges to the solution Xi0)(r9a9x) of the 
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deterministic system of differential equations 

(6.26) ^Ù=G{r,Xw{r)), r > a, X«>\o, o, x) = x, 
ar 

where, from (6.18), we have 
i /•*•+* r 

(6.27) £ ( T , x) = lim - P(dy ; r, X)G(T9 s, x, y) ds. 
11 00 / J t0 J 

Let Z{e)(r9 a9 x°, z, y) be the process defined by 

(6.28) z C , ) ( r » " > ^ z ^ ) - ; ^ T > o r > 

Zu\a9a9x°9z9y) = z9 

with (x°, x, z) satisfying the relation 

(6.29) x = x° + ez. 

The process Z(e) is called the fluctuation process of Xie) about Z<0). We 
shall apply the above theorem to determine the asymptotic behavior of 
this fluctuation process. 

Consider the joint process 

( X ( 0 ) ( T , O, X° ) , Z(e)(r, a, x°9 z, y)9 Y
u\r9 a9 x° + ez9 y)) 

which is a transport process. Evidently X{0) is deterministic and independ­
ent of e but it is carried along in our formulation so as to allow us to 
obtain a convenient form for the generator of the limit of Z(e).4 The back­
ward equation for the joint process follows easily from (6.1), (6.28) and 
(6.29), and is 

dti<\o9T9x\z9y) - 0dü^(a9r9x°9z9y) 
+ Lj(a9 x ) 

+ ±[G(O9 J , x° + ez, y} - G(a9 x°)l-

da v ' ' dx° 

0Jdu(°Xo9T9x°9z9y) 

dz 

(6.30) + q(a9X°feZ9y)j*U\°> T, A z9 Qn(o, x° + ez, y, dQ 

-q(a>X°t€Z>y)u-Xa9r9Az9y) = 09 a<r9 
e 

üM(T,T,x\z,y)=f(x\z,y), 

iï>\a, T, x°, z, y) = E{f(Xw(r, a, x°), Z{'\r, a, x°, y, z), 

Y{'\r,a,x0 + ez,y))}. 

4 This device has also been employed by McKean in [30]. 
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Equation (6.30) is almost of the same form as (6.1). To apply the theorem 
we need the analogs of (6.11), (6.13) and (6.14) for the present problem. 
We state now these hypotheses. 

We assume that 

(6.31) f**' f [G(r, ,, x°, y) - G{r, x°)]P(dy; r, x°) ds I ^ C ( 1 + 'fD, 
J to J \ 1 "T" t 

aij{r9 x°) = lim ± P(dy; r, x°K(|s - a\, y, « ; r, x°) 
it oo t Jto J Jto J 

( 6 < 3 2 ) x[GXT,o,x\y)-GXT,x«)} 

X [Gs{r, s, x\ 0 - £>(T, x0)] da ds, 

(6.33) ^ *°> = S i l J ̂  T' X0) & j G%T' S' A y) dS' 
i,j = 1 , • •• , n . 

As with (6.13) and (6.14) the limits (6.32) and (6.33) are assumed to satisfy 
the analogs of (6.15), (6.16) as well as the analog of (6.12). Define l?a on 
C2"(RnxRn) as follows: 

i%g(*°, z) = \ %J\o, x°) d^f 
(6-34) +l\w).^+2^)^, 

cr^O, x°eRn, zeRn. 
We have the following result. 

COROLLARY 1. Let (X{0)(r, <r, x°), Z{e)(r, a, x°9 z, y)) be as above. Then, 
as e-*0, O^or^r^r, (X{0),Z{e)) converges weakly to a Gauss-Markov 
process with generator ££a given by (6.34). 

Furthermore, letf(x°9 z9y) be bounded measurable and in C*"(RnxRn) 
as a function ofx° and z. Let u(p9 r, x°9 z) denote the solution of 

(6.35) d° 
da 

u(r9 T, X°, Z) = / ( X ° , Z, T) = J>(x°, z, y)P(dy; r, x°). 

7%e« there exists an integer â > a such that for 0^a<T^T9 

(6.36) lim sup \^(<r,r,X\Z,y)-ü(a,r,Az)\ _ 
.Jo A [ , 1 + |x°|* + |z|a 
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Let uu)(a,T9x°9z,y) denote the solution of (6.30) with f=f(x°9 z9 r) 
Then there is an integer öc>a such that for O^a^r^T, 

(6.37) |fî(e,(a, r, x°, z, y) - u(o9 r, x°, z)\ ^ £1/4C(1 + |x°|« + |z|*). 

Let ̂ 4(<r, x) and g(a9 x) be bounded uniformly continuous functions and 
consider the transport equation 

(6.38) , , 
= g((T, x ) , (T < T, 

w(e)(r, T,X, }>)==ƒ(x,)0-

Let (A"(e)(r, a, x, ƒ), F(e)(r, or, x, ƒ)) denote as usual the transport proc­
ess with backward equation (6.1). Then the solution of (6.38) can be 
written in the form 

vv( 

(6.39) 

'X*, T, x, y) = E^xp^A(s9 X{'\s)) ds^j f(X{e\r)9 Y{<\T)) 

- £J£g(s , Z (£)(s))exp(£A(y, tf'>(y)) dy) rfs). 

Thus, w(e) is a bounded and continuous functional of X{s) if we substitute 
in (6.39) the average/(x, r) in place of/(x, y). In fact, for the representa­
tion (6.39) to hold, A and g can also depend on y. Independence of y is 
required for the following result. 

COROLLARY 2. For O^a^r^T the solution w{e\a9 r, x,y) of (6.38) 
with f=f converges as £—•() to w(0)(cr, T, X), uniformly on compact sets, where 

(6.40) ^ T ' ^ + - * > ( ° V , r> *) + A^ * V ° V , T, x) = g(a9 x). 

c r < r , W ( 0 ) ( T , T , X ) = / ( X , T ) . 

This corollary is an immediate consequence of the weak convergence 
of X{e) obtained in the theorem above. 

Let Of czRn be a bounded open set with smooth boundary and assume 
that fix) satisfies the condition that 

(6.41) {xeRn:f(x) 5*0} 
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is contained in a compact subset of Of. Consider the following boundary-
value problem:5 

(i) (6.1) holds for x in the interior of £iï, y e S, a < r. 
(ii) uu\r,r,x,y)=f(x). 

(6.42) uu)(a, T, x, y) = 0, a ^ r, xedS>, y e S, 

(iÜ) (ï~eF{a'7>'X'y) + G (* .5 .* .* ) ) -"«>° -
Here, as in §2, 3 ^ denotes the boundary of Of and n(x) the unit outer 
normal to d2 at x. Let r(g denote the first time X{t) reaches dQi starting 
from (x, y) at time <r. From (2.19) it follows that 

(6.43) uu\a9 r, x, y) = E{/(Z(fi,(r, cr, x, y)), r ^ ^(or, x, y)}. 

As we pointed out in §2, we take (6.43) as defining the (generalized) sense 
in which (6.42) is understood here. In particular, boundary values are 
assumed only where this is compatible with (6.43). We assume also that the 
limiting Markov process is such that the exit time r% is a.s. a continuous 
functional of the path. 

Note that this boundary-value problem is simple enough so that bound­
ary layers do not arise. 

From (6.43) and the theorem of this section we obtain the following. 

COROLLARY 3. Let u{e)(o, r, x, y) be defined by (6.43). Then as ejO, 
O ^ o ^ r ^ r , w(e) converges, uniformly on compact subsets, to u{0)(a, r, x) 
which satisfies (6.23) with f(x9 r)=/(x) and is zero for x e d@. 

Here, w(0) assumes the boundary values in the generalized sense again 
i.e., at those points for which the representation 

u<0)(er, T, x) = E{ ƒ(Z(0)(r, cr, x)), r ^ r%\at x)} 

permits it. We note that the exit time T%} is not a continuous functional of 
the trajectories (X, Y) and therefore the theorem does not apply directly 
to (6.43). However, the set of trajectories for which r^) is discontinuous 
has zero measure and so the theorem is applied after a small detour. 

Corollaries 2 and 3 deal, essentially, with the first two terms on the right 
side of (3.5). As we mentioned in §3 the third term requires additional 
consideration. 

7. Remarks on the theorem and corollaries. We collect in this section 
some remarks concerning the results stated in the preceding section. 
Remark 1 points out the features of special interest in the results as well 

6 Corrected from an earlier version after a remark by R. Hersh. 



358 G. C. PAPANICOLAOU [March 

as some deficiencies. In remark 2 we give references to previous work and 
in remark 3 we examine some related problems and give references. 
Remark 4 concerns Corollary 1. 

1. Briefly, the interesting features of the theorem of §6 are: (i) we show 
weak convergence of Xie) to a diffusion Markov process, not just conver­
gence at one time point, (ii) from (6.25) it follows that moments of all 
orders of Xu) tend to the corresponding moments of the limiting diffusion, 
(iii) (6.1) allows for fast-time, a/e2, dependence and we therefore obtain, 
simultaneously with the diffusion approximation, an averaging approxi­
mation [31], (iv) from (6.1) it follows that the centering need only hold 
approximately, which allows us to obtain Corollary 1 from the theorem 
with no additional effort. As we have remarked already, another important 
feature is that F, G, n and q are allowed to depend on x, y, and a. 

The principal defect of the results is the requirement that S, the state 
space of Y{e) be compact. This requirement simplifies the mathematical 
treatment but it is not essential and can be removed. For example, it is 
not required in Kurtz' set-up [11]. We feel that Grad's approach [32] 
can be used effectively to treat (6.1) when S=Rm and q and rr satisfy 
appropriate hypotheses. In [32], S=RZ, q and TT are independent of a 
and xy i / = 0 , F = 0 , G=y and the null-space of QfftX is five-dimensional, 
not one-dimensional as in (6.1). However, in this case (6.1) is not positivity 
preserving and hence not the backward equation of a transport process. 

When S is a compact differentiable manifold without boundary then, 
with minor modifications, the results of §6 can be extended to include 
force fields H. It is actually of interest to recast (6.1) and the theorem 
of §6 into the appropriate form when (X{e\ Y{e)) takes values in SxxSY 

where Sx is an «-dimensional differentiable, that is, a C00 manifold and 
S y is a compact differentiable manifold without boundary of dimension 
m. 

Let F(T, /, y) and G(r, t, y)9 r^O, t^.09 y E SY be two vector fields on 
Sx which are smooth functions of T, t and y. Let H(T, t, x), r^O, / ^ 0 , 
x G Sx be a vector field on SY which is a smooth function of r, t, and x. 
We shall not denote explicitly the dependence of F and G on x and H on 
y. Let (X{e), Yu)) be the Markov process on SxxSY with backward 
equation 

( 7 , 1 ) + ~e H U j^j uM(a, T) + J2 QJPXO, T) = 0, a < r, 

ul>Xo,T)=feC™(SxxSr). 
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The frozen process Y0(t9 y; o*, x) and P0 of (6.4) are defined as before. 
In place of (6.11) we assume 

F(T, s)f(x, y)P(dy; r, x) ds 
to J 1 + t' 

, f Î G O , 

f 0 ^ 0 , feC* 

Here C denotes a constant that depends on/. We also assume that the ana­
log of (6.12) holds. 

Define JS?r on C00(5X) by the following limit. 

J?J(x) = lim i ft0+t ! P fp(dy; r, x)F(r9 a, y) 
«too tJto J Jt0J 

X !*0(s - a, y, dz\r9- )F(T9 S, z)f • (x, j;) dcr ds 

( 7 3 ) + lim i f<0+' f p ( ^ ; or, X)G(T, S, y)f • (x, y) ds 
Uoo tJto J 

+ lim - P(d);; a, X)H(T, a, x)fx0(s - o*, •, dz; a9 x) 
Uoo tJto J Jt0J 

X F(r, s, • )ƒ • (x, ƒ) dcr ds. 

Here the limit is uniform on x e Sx, r e [O, T] and t0^0. Note that the 
first two terms in (7.3) correspond to the operator J5fr of §6 and the last 
term is due to the force field. The theorem of §6 reads now the same way 
here provided sufficient smoothness is assumed on the ̂ -dependence of the 
various quantities. 

2. The early work by physicists on problems of interest here is contained 
in the paper of Uhlenbeck and Ornstein [33] (with references to earlier 
work of Smoluchovski and Fürth), Kramers [6], Chandrasekhar [10] 
and Wang Chang and Uhlenbeck [34]. The work of Kramers is closest 
to the path we follow here. In all the above works the collision operator 
Q is almost immediately replaced by a second order differential operator 
in y. This corresponds to the assumption that the mass of the moving 
particle is much larger than the mass of the particles in the medium through 
which it is moving. The mathematical elucidation of this approximation 
is given in the first few sections of the paper of Il'in and Khasminskii 
[17]. The approximations of interest to us here are all carried out after 
this preliminary approximation in the above works. Emphasis is placed 
on what is termed the Smoluchovski or large viscosity approximation. This 
corresponds to our diffusion limit when in (3.1), X^eR1, Y{t)eR1

9 

F=y9 G=09 H=H(x) and Q is independent of a and x and not an inte­
gral operator but a second order differential operator i.e., the backward 
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equation is : 

duU)(a, T, x, y) 1 duM(o, T, X, y) , 1 w ,duM(a9r9x9y) 
- H- y - + - H{x) 
do e dx e dy 

82\2 a / * a, / ~ u ' 

Let /?(r) denote the standard Brownian motion process on JR1. Then 
(X{e\ Y(e)) satisfy the Itô equations 

dXu\r) = - YU\T) dry 
e 

( 7 - 5 ) dYl'\r) = -H(XM{r))dT--2Y
i'\r)dT + -d^r), r > a, 

e e e 
Xu\a) = x, Yu\a) = y. 

The usual existence and uniqueness theory guarantees solutions for 
(7.5) and (7.4) under mild restrictions on H(x). Equation (7.5) can be 
written formally as a second order equation for X{e\r), 

(7.6) e — — — + — = H(X (r)) + —— 
ar ar ar 

and the limit e-^0 should formally lead to 

<^-tf(^>(T)) + «, 
dr dr 

which means that X{e) should tend to a diffusion Markov process with 
generator 

2 dx2 ' ' dx (7.7) :rî + flWr-

This is in fact the Smoluchovski approximation. Note however that this 
result is not covered by our analysis because Q is not of the form we have 
assumed and S=E} is not compact. The mathematical analysis of the 
limit £-*0 in (7.4) is given by Il'in and Khasminskii in [17]. An elegantly 
simple analysis of the limit e-*0 in (7.5) is given by Nelson [18] who shows, 
in fact, that the Smoluchovski approximation holds with probability one. 
What Nelson terms pseudotheorem 10.2 [18, p. 77] is actually the theorem 
of Il'in and Khasminskii [17]. 

No doubt one does not have to assume that g is a second order differen­
tial operator for the Smoluchovski limit to hold. All that is required is 
that the collision operator have an invariant measure that is approached 
sufficiently rapidly and the velocity be centered or approximately centered. 
With the obvious interpretation of the various quantities, one can verify 
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that, indeed, our formula (7.3) yields the correct result (7.7), although, 
at present, it is known to hold only when SY is compact. 

Recent developments in the asymptotic analysis of problems of the same 
general form as (6.1) where Q, or its equivalent, is x-dependent, i.e. with 
feedback, are contained in the works of Kurtz [11] and Khasminskii [22]. 
Kurtz has a general operator framework but does not allow for fast-time 
dependence and does not show weak convergence. The weak convergence 
is probably not difficult to obtain by his methods but it is of interest to 
also obtain the averaging of the fast time. 

In [22] Khasminskii considers a problem that translates to our notation 
as follows. Let /?(r) denote the r-dimensional standard Brownian motion 
and let <f>{k)(x, y) and y)(k)(x,y) be n and m-vector functions of xeRn

9 

yeRm respectively, k=l, 2, • • • , r. Let (X{e)(r), Y{B)(r)) be the T r i ­
dimensional diffusion process defined by the Itô equations 

dX{e)(r) = G(Xu\r)9 Yu\r)) dr 

(7.8) dYu\r) = (lle2)K(XM(r), YU\T)) dr 

+ i 2 ^\XU\T), YM(T)) df}k(r), r > 0, 
e k=l 

XU)(0) = x, Y(e)(0) = y. 

The vector functions G, K, <j>(lc) and ip{k) satisfy mild regularity conditions. 
This process (Ar(e), Y{e)) is different from the processes considered here in 
several respects. To make the comparison somewhat more explicit we 
introduce a system of Itô equations that corresponds to (3.1), (3.2): 

dXu\r) = ±F(T, J , XM(r), YM(r)} dr 

+ G^r,^,XM(r),YM(r)jdr, 

(7-9) dYl<\T) = (1/£
2)K(T, XU\T), y(e,(r)) dr 

+ i 2 V<r,(T, X("(T)> YM(T)) dfor), T > a, 
sk=l 

Xie)(o, a, x, y) = x, YU)(o, a, x, y) = y. 

Clearly, instead of a jump process Y(e) we have a diffusion here and the 
feedback is perhaps more clearly visible. Note that the X{e) equation in 
(7.8) has Brownian motion terms but no F terms whereas the opposite 
is true in (7.9). This is the essential difference between the set-up here 
and Khasminskii's problem (7.8); the fact that Y{e) is a jump process or a 
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diffusion is not so important. In particular, because (7.8) has no F term, 
no centering problems arise and no assumptions about the existence of an 
invariant measure for the "frozen" Y process need be introduced. Indeed, 
no such hypotheses are introduced in [22] where the result is that X{s) 

converges weakly as e[0 to a diffusion Markov process whose generator 
is obtained in terms of averages of G and <f>ik) with respect to the distri­
bution of the frozen process (which is defined by equation (1.5) in [22]). 
It should be added that Khasminskii motivates (7.8) as a generalization 
to a problem studied previously [25] and [12, p. 335 where references to 
earlier work of Gihman are given] whereby the Yie) equation in (7.8) 
is simply 

(7.10) dYU)(r) = (1/e2) dr. 

The simpler problem corresponds to the method of averaging [31] for Itô 
equations whereas the more general problem (7.8) corresponds to Volosov's 
generalization of the method of averaging [36] for the Itô equations. 

An interesting problem is the analysis of the combined version of (7.8) 
and (7.9) in the limit ej,0 for jump processes or for Itô equations. 

3. We return now to problem (6.1). When Q does not depend on a 
and x we have the random evolution problem; we refer to [9] and [10] 
for additional information. When F=0, G=y and Q is independent of a 
and x the problem can be dealt with directly by Fourier transforms. 
Ellis and Pinsky [37 and references therein] have studied this problem when 
Q has a multidimensional null-space. This is a linearized version of the 
hydrodynamical limit for the Boltzmann equation [38 and references 
therein] that leads to Euler's equations. The problem F=y, (7=0 has also 
been considered and the connection of this and related problems with the 
Hubert and Chapman-Enskog expansions has been studied in [37]. 

From the point of view of linear transport theory the basic problem is 
the adjoint of (6.1) with F=y, G=0, Q independent of a and x, y e S2, 
the unit sphere in R3, and the boundary conditions (3.3). Asymptotic ex­
pansions for this problem have been constructed by Larsen and Keller 
in [39], studied further in [40] and presented in a physical context in [4]. 
The results of §6 are not sufficient to deal with the boundary conditions 
(3.3) because of the presence of boundary layers. The analysis of the 
transport-theoretic boundary value problem in the diffusion limit by 
probabilistic methods will be given elsewhere. The analysis given here 
of the free space problem or the boundary value problem (6.42) which does 
not have boundary layers, agrees with the results of [39] and [4] including 
in particular the analysis of the initial layer. 

4. Corollary 1, as presented here, is a simple consequence of a more 
general result but it is of substantial independent interest. Let 
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(Xi0)(r, a, x°, z)9Z
i0)(r9 a, x°, z)) be the diffusion Markov process with 

generator (6.34). Define <x(o*, x°) as the symmetric square root of a(p9 x°) 

(7.11) au(a9 x°) = 2 *ik(<r> * W > x°). 

Then (Ar(0),Z<0)) satisfy the Itô equations 

(7.12) dX(0\r) = G(r9 Z ( 0 )(T)) dr9 

dZ^\r) = b{T9 X « » ( T ) ) Z « » ( T ) dr + a(r, X«(T)) d0(r), a > r, 
( ' ' Xi0)(a9 a, x°) = x°9 Z«»(a9 (f, x°9 z) = z. 

Here /?(T) is the standard w-dimensional Brownian motion and, as we 
mentioned in §6 already, X(0) is deterministic but is carried along for 
convenience. Note that (7.13) is a linear Itô equation so Z(0) is Gaussian. 
We can solve (7.13) as follows. Let U(T9 a; x°) be the solution matrix of 
the equation 

dU(r9 a; x ) , / ^(o)r own/ o\ ^ 
—L-- = b(r9 XW\T9 a; x ))C/(r, a; x ), r > a, 

dr 
U{o9 a;x°) = I9 the identity. 

Then, 

(7.14) Z(0)(T9O9X°9Z) = U(r9a;x°)z + \TU(r9s;x0)oL(s9X
{0\s9a9x

0))dP(s) 

and hence 
(7.15) E{Z«\T9 a9 x\ z)} = U(T9 a; JC°)Z. 

Since z is the fluctuation at the beginning of the motion, it is natural to 
assume z=0. In this case we can compute the covariance matrix of Z(0) and 
obtain 

£{Z (0 )(T, <r, x°9 0)Z{0)T(r9 a9 x°9 0)} 

( 7 ' 1 6 ) = fV(r, s; x°)a(s, X(0)(s, a9 x°))UT(r9 s; x°) ds. 

This is a simple but useful formula which illustrates the kind of information 
that is readily accessible. 

Corollary 1 has been obtained previously by Khasminskii [13] and 
Gihman-Skorohod [12, p. 342 where references to earlier work are given] 
when there is no feedback present, i.e. when the collision operator QayX in 
(6.30) is independent of x. Actually, in the no-feedback case, the results of 
[13] and [12] are more general with regard to the nature of Y{e\ 

Recently, B. White [41] has analyzed stochastic differential-difference 
equations in a manner analogous to [13] and has applied the results to 
several interesting examples. 
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A theorem similar to Corollary 1 is given by Norman in [7, p. 118]. 
The limiting process in this result is of the form (7.12), (7.13) but the 
hypotheses and conclusions differ from the ones of §6 in several respects. 
Norman gives a learning-theoretic interpretation of his results and should 
be consulted for additional information (cf. also the remarks concerning 
slow learning in §4). 

8. Some applications of the diffusion approximation. In this section 
we consider two applications. The first is an example studied by Stroock 
[14] and Baggett and Stroock [15] and, in a special case, corresponds to 
the diffusion approximation for one-speed neutron transport [4], [39]. 
This example can also be interpreted as a slow learning model. The 
second example is the harmonic oscillator of §4. We assume that smooth­
ness and boundedness conditions on coefficients, as stated in §6, hold 
here and we do not state them explicitly. 

We consider (6.1) when X{&) e Rz and Yu) G S2 the unit sphere in R*. 
Let dS(y), y G S2, denote normalized uniform measure on S2. We assume 
that 7r(cr, x, y9 A) has a density with respect to this uniform measure which 
is rotation invariant that is, 

(8.1) TT((T, x, y, dz)ldS(z) = ir(o, x, y • z). 

Here y • z denotes the dot product of ƒ and zeS2 and we denote the den­
sity with 7T. We shall also assume that q=q(<r9x) is independent of y. 
The case where q depends on ƒ can be treated in principle but the formulas 
are unwieldy; we remark further on this below. We rewrite the version 
of (6.1) which concerns us here. 

a»'>-;^> + g n.. »,,) + <«* », yf"(°£*^ 
(8.2) + ^ ^ ! uu\a9 r, x, z)7f((T, x, y z) dS(z) 

- (q(a, X)/£2)M(£)(CT, r, x, y) = 0, a < r, 

u{e)(T,T9x,y)=f(x9y), xeR\ yeS2. 

Note that we have assumed that F and G do not depend on the fast time 
G\E2 explicitly. This is because we have a learning theoretic interpretation 
in mind (or, when F=y, G=0 , the one-speed neutron transport). This 
interpretation is as follows [14]. 

A bacterium, whose position at time r is X{t\r) and its velocity YU)(T), 

moves along the trajectories of the vector field F/e+G for a random length 
of time at the end of which the velocity changes direction. The proba­
bility distribution of the time between jumps and of the new velocity 



1975] ASYMPTOTIC ANALYSIS OF TRANSPORT PROCESSES 365 

immediately after the jump is given by (2.4) (adapted to the present no­
tation). The position and velocity of the bacterium (X{e)(r), Y{S)(T)) is 
thus a transport process. It is constructed in exactly the way such pro­
cesses were constructed in the beginning of §2. Interest in (8.2) centers on 
the dependence of q, the collison frequency, on x9 because then one can 
think of the motion as adapting to environmental conditions reflected 
through the x dependence of q and TT. 

We assume here that q(<r9 x)^o>0 and that F9 G and % have con­
vergent expansions in spherical harmonics: 

F\a9x9y) = f irU°*x)Yr(y)> 
1=0 m=—l 

I 

(8.3) G\a, x,y) = 2 2 G<«>> * ) W , ' = L 2, 3, 
1=0 m=—l 

TK<T, x, y • z) = — J *«(*, x)(2J + l)Pl(y • z). 

In the expansion for TT9 7r=3.14 • • • and should not be confused with 
previous notation. Since 0- is a density, 7f0= 1 and we assume sup^0 #i< 1. 
The meaning of this condition is discussed at the end of this section. 
Using the addition theorem for spherical harmonics we rewrite the ex­
pansion Or in the form (*=complex conjugate) 

(8.4) *(<r, x, y • z) = J f *,(*, x)Y?\z)YÏ(y). 
1=0 m=—l 

The spherical harmonics are orthonormal 

j>' (8.5) | Y? {z)Y? (z) dS(z) = àmm, àiv 

and complete in L2(S2). 
To implement the theorem of §6 (we assume that all smoothness and 

growth conditions for F, G,q and TT hold here) we must compute P and 
F0 from (6.4) and (6.6). Let P0(t, y,y; <r, x) denote the density of P0 with 
respect to the uniform measure on S2. Using the above expansion, (6.4) 
takes the form 

(8-6) iT̂  
- q(a9 x)P0(t9 y9y;o9x) = 0 t>0 

P0(0, y9 y\ o9 x) = ô(y - j>). 
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From the orthonormality relation (8.5) we find that 

(8.7) P0tlm(U y\ o9 x) =jP0(t, y, y; a9 x)Yf(y) dS(y) 

satisfies the equation 

(8.8) a J W 3 / ; ^ X) = g ( g ' x)i*t(a'x) ~ 1 ) P°-"" ( f ' y; a' x)> t>0> 

Po.m(0, Pi o, x) = Y f (ft. 

Therefore we have the expansion 

(8.9) P0(t,y,y;M)=Ü exp(-t[l - *&>, *)]«(*, *)) 170017*09. 
1=0 m=—l 

From (8.9) and the assumption 7f|<l, / ^ l it follows that 

(8.10) F(y;a,x)=l 

i.e., the invariant measure is the uniform measure which is of course 
what one should expect with q>0 and TT,<1, /2*1. The centering hypoth­
esis for Fis: 

(8.11) f F(a9x,y)dS(y)~0. 

We are now ready to calculate the diffusion and drift coefficients for the 
limit diffusion Markov process to which X(e) tends. We use the expansions 
(8.3), (8.9), and (8.10) in (6.17), (6.18) to obtain 

(8.12) fl«(r,*) = 2 | 2 f ^ r ^ ^ l ^ U = 1,2,3, 
jti ^-i q(r9 x)[l - TT^T, x)] 

+ GUr9 *)• 

The infinitesimal generator J£?r of the diffusion Markov process to which 
Xie) converges can thus be written in the form 

t = l ^=1 2=1 w = - l 

(8.i4) xfr—^^—m 
dXilqir, x)[l — TTZ(T, x)] dxj J 

+ JtGUr,x)^. 
Jri dx, 
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When F=y, G=0, then (8.14) reduces to 

(8.15) 

#rf. ix)a.4*$ ±( 1 m\ 

= 4TTV . / 1 v / ( x ) \ 
3 \q(r9 x)[l - n^r, x)] 1 

Let us also consider the case F=0 and apply Corollary 1. From (8.14) 
it is clear that when F=0, X{e) converges to a deterministic process X{0) 

satisfying the system of equations 

dX (r, O, x ) f t0) o 
/8 16) = G00(r, XK \T, a, x )), r > a, 

X{0\a9 a, x°) = JC°. 

We proceed now to find the generator of the limit of the fluctuation 
process [X(e)-X<0)]/e=Z(fi) by using (6.32) and (6.33) along with (8.3), 
(8.9) and (8.10). A short calculation yields for j£?r of (6.34) the expression 

& g(xo z ) = y y y y GÏm(r, x»)GUr, x°) a2g(x°,z) 
'^ ' ,tîéém£^(T,X0)[l-^(T,X0)] dztdz, 

«17^ , v v dG«o(T, x°) dg(x°, z) 
(8.17) +ZZ dxo

 z' —^— 
i = l j = l VXj OZj 

, v f i , o ag(x°,z) 

Note that here the diffusion coefficients are independent of z and the 
drift is linear in z. According to remark 4 of §7, Z{0)(T, a, x°, z) is a 
Gauss-Markov process with covariance given by (7.16) when z=0. Note 
further that the effect of feedback is manifested through q and irl in (8.17) 
which depend on x°. 

When q=q(a, x,y) depends on y, the above analysis is complicated in 
going from (8.6) to (8.8) and hence in obtaining (8.9). The calculation can 
be carried out using the Clebsch-Gordan coefficients [42] but the formulas 
are unwieldy. 

The second example we consider is the harmonic oscillator (4.4). 
We shall apply the theorem of §6 to (4.9). We must first, however, intro­
duce some hypotheses. Suppose S1 is parametrized by <f> e [0, In) and it 
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has a density TT(O9 R, <f>—</>'). We rewrite (4.9) as follows. 

du{e\r, a9 R9 0, </>) + co ^ /Q + 2coa\ du{s\a9 r, R, 9, <f>) 
da e \ e2 / dR 

e Jo 2TT 

e 
uM(r,r,R,d,<f>)=f(R,e,<f>). 

In a manner analogous to the preceding example we assume that 

(8.19) mo, R, <f>) = J *«(ff. *)«"*. 
l=— 00 

(8-20) g(<£) = J &*"*• 
Z = — oo 

Again we have 7r0=1 and we assume q>0 and sup^0 #i< 1. The meaning 
of this condition is discussed at the end of this section. For centering, we 
assume g0=0-

The invariant measure here is d^jlir and P0 is easily found to be 

P0(t, 4>, $; a9 R) df 

<8'21) = J exp(-r[l - 77,(a, *)]«(*, R))cxp(il(<f> - $))& . 
ï=—oo Z 7 T 

We proceed now to compute the diffusion and drift coefficients of the 
diffusion Markov process to which (R{e\ 0ie)) tends as ej,0. On using 
(6.13) and (6.14) we find that all coefficients are independent of 0 and 
depend upon r and R only. Thus Rie\ the logarithm of the energy, con­
verges to a diffusion process on the real line with generator 

dRl^i [1 - TTJ(T, R)fq\r9 R) + Aaf dR J 

We omit here the calculations which are analogous to the ones for the 
previous example. Note that if q and TT are independent of R9 that is, (4.4) 
is a linear oscillator, then the diffusion and drift coefficients in (8.22) are 
only functions of r and therefore Rie) converges in this case to a time-
inhomogeneous Brownian motion on the real line. 

We shall now examine the assumption supj^0 ^i<l introduced above. 
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Since the density 7?(cr, x9 y • z) has a convergent expansion (8.3), ^-+0, 
1-+O0 and so the assumption above is equivalent to 7fj<l for all / ^ l . 

Let us show that supI#0 # J < 1 implies that (6.8) and (6.9) are satisfied 
and p{t) is, in fact, proportional to a decreasing exponential. We shall 
treat (8.9) since (8.21) can be treated in the identical manner. From (8.9) 
we have the following. 

Po(t, y,y;<y, x) 

= 2 2 exp(-*[l - *,(*, x)]q(o, x))Y?{y)Yf{y) 
1=0 m=—l 

(8-22) = | exp(_„(ff, x ) ) M ^ | f *](o,xmy)Yf(y) 
v=0 v • 1=0 m=—l 

= f *-*•••> M^K ^\o, x, y • y). 
vtî, v! 

Here 7T{v)(a, x, y • y) is the vth convolution of the density 7r(<r, x , j • jp) 
with itself and for v=0 it is the delta function concentrated at y. 

The hypothesis sup^0 ^i(^5 x)<\ implies that 

(8.23) \*{vXcx9yy)-l\^Cp\ v = 1, 

where C is a constant and 0</><l. This is seen from the expression 

recalling that 7r0=l here. 
Letf(y) be a bounded measurable function. Then, 

f[Po(t,y,y;o,x)--l]f(y)dS(y) 

= 2 e~tQi<r'X) ltq(a\X)Y ([*(v)(<x, x, y • y) - 1]ƒÜ0dS(^). 

Using (8.23) we obtain 

\[P0(t,y,y;o,x)-l]f(y)dS(y)\ 

= c 2 e-*(M) L^ ; ;J PV sup i/ooi, 
where C' is a constant. Thus 

„-*«<*.*> [tq(0, x)]v 

\i [P0(r, y, ƒ; <r, x) - !]ƒ(ƒ) rfS(j) ^ C' sup | /OOI f * * ' 1 , 

and hypotheses (6.8), (6.9) have been verified. 



370 G. C. PAPANICOLAOU [March 

The physical meaning of the condition sup^o^ifa» * )<1 is that it 
makes the "frozen" velocity process i.e., the velocity of the bacterium 
in the absence of drift, a mixing Markov process in the sense of (6.8), 
(6.9). 

9. Outline of the proof of the theorem. The proof of the theorem of 
§6 is patterned after the proof of Theorem 1 in [43] which was also 
followed in [21]. The essential steps are perhaps most transparent in 
[43] which is recommended for this reason. We review briefly the argu­
ment here. 

The interval [0, r] is broken up into intervals of length A~e7/4 . The 
power 7/4 is of no special significance; any exponent in [1,2) would do 
if the peripheral estimates could be obtained for it. The intervals A are 
small in the T time scale so that the Xu) process does not change much 
over one A interval. On the other hand the Y{e) process has intrinsic 
time scale r/e2 so the interval A is A/£2~£-V4 for Y(e) i.e., it is large. 
It is actually large enough so that Yie) in this interval can be treated with 
X{e) frozen to its value at the beginning of the interval and so that F (e ) , 
with Xie) frozen, is equilibrating to its invariant measure P. This is the 
standard way of thinking that one finds in the physics literature, for exam­
ple in [6], and our approach simply follows this argument. An intuitive 
understanding in terms of multiple time scales may be obtained from [44]. 

In §12 we derive an a priori estimate for the moments of Xie\ This 
estimate is necessary for the proof of weak convergence. §13 sets up the 
decomposition of the problem into local estimates over intervals of 
length A as described above. §14 provides the estimate that corresponds to 
the statement: A/e2 is large enough so that the process X{e) is statistically 
independent over nonoverlapping A intervals. This explains the title for 
this section. §15 provides the estimate that corresponds to: A is small 
enough so that X{e) does not change much over a A interval. This section 
is entitled Local Taylor Expansion for obvious reasons. 

We remark again that the hypothesis that S, the state space of Y{e), 
is compact, is used heavily in what follows but we feel the argument can 
be refined, perhaps along the lines of [32], to remove this hypothesis. 

Throughout we employ the convention that C denotes a constant, not 
necessarily the same constant. Similarly we use â to denote a sufficiently 
large nonnegative integer. 

We also assume that G = 0 in (6.1) since the treatment of G is elementary 
by comparison to F, and G # 0 would only clutter the formulas. It can 
be verified that the proof that follows carries over without essential changes 
to the analysis of (6.30) and Corollary 1. Furthermore, because we have 
assumed that F, G, q and IT depend on a the same way as on x (with the 
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same degree of smoothness) and since 0<a^r^T<co9 we may treat a 
as another x-coordinate and hence eliminate it from explicit considerations. 
In fact, with the notation a=x0 in (6.2) and (6.3) we have anticipated 
this simplification. With no loss of generality then, F (G=0, we assume), 
q and IT will be assumed independent of explicit slow-time dependence 
in the sequel. 

10. Preliminary results and identities. We begin with an estimate on 
P0 the solution of (6.4). Since x is a parameter and everything depends 
smoothly on it P0(t9y, A; x) is differentiable in x. We need the following 
result. 

LEMMA 10.1. Letf(x, y), x e Rn, y e S, be measurable and such that 

(10.1) \f(x,y)\^C(l + \xn 

<: C(l + M*"1), i = 1, 2, • • • , n. (10.2) 

Then, 

(10.3) 

and 

dfix, y) 
dx( 

1 — 
\dx{. 

x)f(x, y) ^ c(i + M'-1), 

(10.4) 

| ~ ƒ [P,0, y, àl; x) - F(dt; x)]f(x, 0 

3S/> MC(l + | x r ) , t>0, i = U2, 

PROOF. Let u0(t, y; x) denote the solution of 

du0(t, y; x) 
dt 

(10.5) = q(x, y) u0(t, z; x)ir(x, y; dz) - q(x, y)u0(t, y; x), t > 0, 

"o(0, y;x) =f(x,y), 

and let/(x) be defined by 

(10.6) f(x)=JF(dy;x)f(.x,y). 

We denote derivatives with respect to xt by a comma and subscript i. 
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Differentiating (10.5) and using this notation we obtain 

= l(x, y) Uo,i(t> z; X)TT(X9 y9 dz) - q(x, y)u0ti(t9 y; x) 

(10 7) f 
+ 0.<(x, y) u0(t, z; X)TT(X9 y9 dz) - qA(x9 y)u0(t9 y;x) 

+ <l(x, y) u0(t9 z; X)TTA{X9 y9 dz)9 t > 0, 

W(u(0, y;x)=fti(x,y). 

In the last three terms on the right side of (10.7) we may replace u0 by 
t/0—ƒ because the ƒ cancels. Integrating (10.7) yields 

"o.iC, y I x) = J Po(t, y, d£; x)fA(x9 0 + P0(t - s, y, d£; x) 

X \q,i(x9 0 f (u0(t9 z; x) -f(x))n(x9 £, dz) 

(10.8) -q.WQ(u«(Ui\x)-f(x)) 

+ <l(x9 0 I (u0(t9 z; x) -/(x))7Tfi(x, £, dz) ds. 

We estimate u0i from (10.8) by using the hypotheses of the lemma and 
hypotheses (6.3) and (6.8) as follows. 

(io.9) |M°-*(*'
 y; x ) |=c( i+ |x |a_ i )+c( i+ |x |a_ i )rp(s ) ds 

< c(i + ixr1). 
In the last inequality we used (6.9).6 

From (10.9) we obtain (10.3) by an elementary argument. We proceed 
therefore with the proof of (10.4). To simplify the notation we introduce 
along with 

(10.10) Qxf(y) = q{x9 y)^f{z)n{x9 y9 dz) - q(x9 y)f(y) 

of (6.1), the operator 

Qif(y) = <?.*(*, y) \{f(z) - /OOM*, y9 dz) 
(10.11) J 

+ <l(x,y) \f(z)TTti(x9y9dz). 

«Note that when f(x, y)=XA(y) then, \P0,i(t, y, A; JC)| <C(H-|JC|)-X and the same 
estimate holds for Pti(A; x). This is used in (10.19). 
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Let 
(10.12) v(t,y; x) = u0(t,y; x) - ƒ ( * ) . 
Then 

(10.13) dt *x v " * 
v (0, y ; x) = f{x, y) - fix). 

Differentiating (10.13) with respect to x{ and integrating the resulting 
equation yields 

v.i(t, y ; x) = h0(t, y , <%; x){f^x, Q -ƒ<(*) ] 
(10.14) J rf 

+ 1 1 Poit - s, y , dl\ x)Qlvis, £; x) ds. 

From (6.6) we have the identity 

(10.15) [Pidl; x)QAU Cl x) = 0, 

and hence by differentiation we obtain 

(10.16) \PM\ x)QAt, t; x) + [Pidi-, xy&At, C; *) = o, 

where we have used (10.15) to eliminate the vti term in (10.16). Now we 
return to (10.14) and rewrite it as follows. 

v.lU y, x) = J W , y, di; x) - Pidt; x)]fM 0 

- [PM\ x)f(x, 0 
(10.17) \ t , 

+J J [P0(t - s, y, dt; x) - J*(d£; x)](?xv(s, £; x) ds 

+ nPidUx)Qt
xvis,C;x)ds. 

Let us use in (10.17) the identity (10.16) and also 

(10.18) v(t, y;x)= fix, y) - fix) + \QA', y I *) ds. 
Jo 

We obtain 

v.i(t, y , x) = ([Poit, y , dl, x) - Pidl; x)]Ux, Q 

(10.19) + ['ƒ [P0it - s, y , dt, x) - PidU x)]Qlvis, C; x) 

-jPriidC;x)vit,C;x). 
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From the hypotheses of the lemma (10.9), (6.3), (6.8) and (6.9) follows 
the estimate 

(10.20) M ' ' y' X)l = C(1 + lxla_1>^r) + C^ + | x | a _ 1 ) J / ( r ~ s)^s)ds 

+ ca + ixrxo. 
Since p(t) is monotonically decreasing and (6.9) holds, 

| p(t - s)p(s) ds^p ( M I p(s) ds + p (M J p(* - 5) ds 

and thus (10.4) follows. The proof of the lemma is complete. 
Let us rewrite (6.1) without explicit cr-dependence, with G=0 and the 

notation (10.10): 

du{e\a, T, x, y) 1 r(a^ v ,.\ 9M(£)(cr, r, x, y) 
da M ? - F ^ 

(10.21) 1 

» , 

+ 1 Ô / > , T , X , } ; ) = 0, (T<T, 

uuV,^x, y) = ƒ(*,)')• 
Recall that P0 satisfies (6.4) which we rewrite here 

dP0(t, y, A;x) 
(10.22) it = Q*Po(t,y,A;x), t > 0, 

P0(0, y, A; x) = XAW-

In the sequel we employ repeatedly two identities which we call the para-
metrix7 identities. They are as follows : 

M(e)(cr, T, x, y) = M0((T - cr)/£2, y•; x) 

(10.23) ^fH^***) 

x F J ^ , x, n Mt
(f (s, r, x, o rfs, 

M(e,(cr, r, x, y) = M0((T - a)le2, y; x) 

(10.24) +i|J^V,5,x,y;^,^) 

X FA-2, ^rjju0ti^^ 9i^; n ds. 

7 Terminology suggested by H. P. McKean. 
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The first one is called the forward and the second the backward parametrix 
identity and we employ subscript-comma notation for derivatives with 
respect to x and the summation convention. We also denote by 
P(e\a9s9x9y9A9B) the solution of (10.21) when f(x, y)=XAxB(x> ƒ)> 
the characteristic function of the Borel sets A<^Rn

9 BaS9 and we denote 
by u0(t, y; x) the solution of (10.22) with f(x, y) as initial function i.e., 

u{e\o, T, x, y) = hu\a, T, x, y9 dS, drj)f(S, V), 

(10.25) J 

u0(t, y; x) = P0(f, y, drj; x)f(x9 rj). 

Both identities can be verified easily by direct computation. Local (in 
time) differentiability is, of course, immediate from the smoothness hy­
potheses on the coefficients and data. Better estimates for derivatives of 
uie) with respect to x, the only ones that require consideration, are ob­
tained in the next section. It should be observed that (10.23) and (10.24) 
are the analogs of (5.6) after expectations are taken and the Markov 
property of (X{e), Y{e)) is used. 

11. Estimates for derivatives of the transport equation. Under the 
hypotheses of §6 the existence, uniqueness and local smoothness of solu­
tions of (10.21) (or (6.1)) follow from the usual iteration arguments. 
We need a bound for x derivatives of u{e) independent of e and valid in an 
interval of length A=e7 / 4 . This bound is obtained in this section. 

From the differential equation 

(11.1) ^ Ç ^ = ^ f ë , X ( ^ r>a, X{<Xo,o,x,y) = x9 

dr e \e' / 

and from (6.2), it follows readily that 

(11.2) \X(e\r9 a9 x9 y)\ ^ C(l + |x|), 0 ^ r - a ^ e. 

Therefore, if g(x9 y) is measurable and 

\g(x9y)\ ^ C(l + \x\a)9 a ^ 0 integer, 
we have 

(11.3) l' P{e)(a9T9x9y9dÇ9dr)Mè9r]) ^ C(l + |x|a), 0 ^ T - a ^ e. 

We begin with the following result. 

LEMMA 11.1. Let w(8)(cr, r , x9 y) denote the solution of (10.21) with data 
fix) independent of y and in CUa{Rn)9 a ^ 0 . Let A=A(£)=e7 /4 . Then there 
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exists an integer 5c > a such that 

(11.4) \u{f(a9r9x9y)\^C(l + \x\% i = 1, • • • , n, 0 ^ r - a ^ A, 

wAere C is independent ofr9 a and e. 

PROOF. Define H{e) by 

(11.5) H(e,(cr, r, x, y) = 1 - exp ["- ^J\(f<e,(s, a9 x, y), 3;) rfsl, 

where Ç{e)(s9 a, x, y)=£{e)(s) denotes the solution of 

(11.6) *fpÛ = lFUi9p\s)9y), s>o, ^\a9a9x9y) = x. 
ds e \e 1 

We rewrite (10.21) as an integral equation using the above notation as 
follows. 

ui'\cr,T,x,y)=ni('\r))(l-H(')) 

(11.7) + n > , ( S ) r ) !
< « , ( s ) ) z ) 

x^\s),y,dz)dtH
('\a,s,x,y). 

Employing comma-subscript notation and the summation convention we 
differentiate (11.7) with respect to xt and obtain 

u\?(o, T, x, y) 

+ £[«!?(».T> ^ l z)tf&sM?'Xs), y. dz)dflu\a, s, x, y) 

( 1 1 ' 8 ) + r j W < e ) ( S ' T ' fU>(S)' z^.>^'Xs),y,dz)^%)dtH
l'\o,s,x,y) 

+£f« ( t ) ( s ,T , l("00, z)7r(|(e)(s), y, dz) d,H]lXo, s, x, y), 

i = 1 , 2 , • • • , n . 

From (11.6) we obtain by differentiation 

(11.9) #>(T) - dtt + i ƒƒ,.» ^ , |(e,(s), >>) fÜkO <**• 

We also have the easily verified identity, for smooth ƒ, 

(11.10) /(lU)(r)) = ƒ(*) + i J \ (J2 , l
w(s), v) /,*(l(t)(s)) A. 
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Now we employ (11.9), (11.10) and (10.23) to rewrite (11.8) as follows. 

ulf =/i(lU)(r))(l - tf<") +!'JV<'->(s' T, l(t)(s), z) 

x irtf'Xs), y, dz) dtf'Xo, s, x, y) 

+ -ef.&*(7))\fi* (j* > ?%)> y) #fc) «fed - fl(t)) 

+ ~e £ƒ«!?(». T, f (,)(s), ïWf'W. y, dz) 

( n n ) x J \ f c ^ , |<e)(si), ƒ) l^(si) * i ^H(«»(<T, s, x, y) 

X «W(Sl, T, !w00, 0ir.X£<«»(5), y, dz) 

+U7/X î lF i '^£;f,"(s,)f«6-f" , ( 'u) 
x «W(Sl, T, p\a), OMPXs), y, dz) dSl dja? 

- -e [f/tfy > *w(*). y)usuXsù) ds1 dtf<\ 
i = 1,2, • • •, n. 

To simplify notation we write (11.11) in the form 

«.? =/i(l<e)(r))(l - HU>) 

(11.12) + £ J V ( ' ) ( S ' T > | ( 8 , ( s ) ' zM£(t>(s)> * dz) d8HU) 

+ (l/£)Wt,(<7,T,x,>0, 

where ^ e > is identified by comparison with (11.11) and depends on 
MU> and derivatives u\f, j= 1, • • • , n. 

We can use the fundamental solution P(t) of (10.21) to write (11.12) 
as follows : 

ulf(o, r, x, y) = (lleWÏXo, r, x, y) 

+ [PUX<*, r, x, y, dx, dy)Ux) 

(1L13) + - JTJW*, », *, y, dx, dy)q(x, y) 

X f Wl'Xs, r, x, Z)TT(X, y, dz). 
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Now we use the hypotheses ƒ G Cha(Rn), 0 ^ T - O ^ A = £ 7 / 4 , (6.2), (6.3) 
and (11.2), (11.3) to estimate the right side of (11.13). To the resulting 
inequality for max^t/fl we apply GronwalFs lemma (GronwalPs ine­
quality) and (11.4) follows. The constant C depends on the various con­
stants in the hypotheses of §6 and the function/. We omit further details. 

LEMMA 11.2. In Lemma 11.1 assume f e C2**(Rn). Then, 

\u%a9T9x9y)\^C(\ + \x\% 

where A=67/4. 

We omit the proof of this lemma which is similar to the one above but 
involves more computation. 

12. Estimate for moments. In this section we derive the following 
estimate which does not depend on the lemmas of §11. 

LEMMA 12.1. Let f(x)=\x\p
9 p^O integer. Then the solution of (10.21) 

(or 6.1), with this f as data, satisfies 

uie)(a9 T, x, y) = E{\X{e)(r9 a9 x9 y)\*} 
( 1 2 . 1 ) Û C(l + |x|*), 0 ^ a ^ r ^ T, 

where C is independent o f e but depends on T andp (and other quantities). 

PROOF. We may assume that/? is even and denote it by 2p. The case of 
odd/? follows by Schwarz' inequality from the even one. 

Let f(x)=\x\2v. From the differential equation (11.1) it follows that 

E{f{XM(r, a, x, y))} = £{/(X("(r))} 

(12.2) = f (X) + \ [E{Fi if2 ' Z">(5' °' X' y)' y<e>(S' °' X' y)) 
X Utf'Xs, a, x, ƒ))} ds. 

We recall that we are employing the summation convention and comma 
subscript notation for x-derivatives. 

We introduce the following notation : 

(12.3) g(t,x,y) = Fi(t,x,y)Ux), t^O, 

(12.4) i#V> s,y;x) = \P0y—^ , y, dr\; x\ gl\ , x, rA, 

(12.5) vM(a, s, x, y) - J>>(<r, s, x, y, d£, dr,)g U , $, V\, s^a. 
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With this notation (12.2) becomes 

(12.6) E{ ƒ(X(e,(r))} = ƒ (x) + - f >>(*, s9 x, y) ds. 
e J<T 

We now use the identity (10.24) to express vle) in terms of Vos). 

v{e\a9 s, x , y) = v(
0
e)(<y9 s, x, y) 

(12'7) + \ TJP ( £ ) ( a' 7' *' * * ' dTl)FjÊ ' * ' V ) ^ ( r ' S'̂ ; l}dy' 
Substituting v{e) from (12.7) into (12.6) and recalling that/(x)=|x|2p 

we obtain the following identity. 

£{|X (e)(r)|2»} = |x|2" + - ( V ( < r , s, y; x) ds 
e Ja 

(12.8) + ^ £ £ E J F , (ji , X«>(y, <r, x, ƒ), 7U)(y, a, x, ƒ)) 

x t^:Ky. *. yU)(y» *> *> y); * < e W > * . ? ) ) } dy ds. 

Let us rewrite vl
0

s) of (12.4) in the form8 

f o V , s, ƒ; * ) = IPoy—^- > »̂ dV> x)8ri ' *>*?) 

(12.9) +J>(^;*)g(f2,*,>?) 
s uie)(<r, s, y; x) + w0(slt?; x). 

From (12.3) and hypothesis (6.2) it follows that 

" i^c^i^ca + kr-1), r̂ o,y = i,•••,». 
These inequalities, (6.8) and Lemma 10.1 yield 

l«4V s, y;x)\£ ft(s - cr)/fi2)C(l + \x\2»\ 
( } \4%a, s, y; x)\ ^ p((s - <r)/2e2)C(l + M2»-1). 

Hypotheses (6.11), (6.12) and (12.10) yield 

(12.12) 
V 

v 

w0(s; x) ds 

w0J(s;x)ds 

^ C(l + |x|") 

^ c(i + W2"-1), r , f 0 ^o . 

1 /*o is defined by (6.7). 
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We now insert (12.9) into the right side of (12.8) and estimate terms with 
the help of (12.11), (12.12) and hypotheses (6.2) and (6.9) as follows. 

£{|X(e,(T)|8»} = M2* + i jyo'\a,s,y;x)ds + ± £ w 0 ^ ; x ) ds 

+ tjrJ3JpM(o,y,x,y,dtj,dr]) 

X F)/^ , ë, r\u$(y, s,r);0 dy ds 

(12'13> + ^n7PU>(<T' Y> *' y' di' drj) 

xFik'^V)w0ii^y,ljdyds 

g |x|2» + sC{\ + \x\2») 

+ C[JpM(°' Y, x, y, d^, drj){\ + HI2*) dy. 

We recall here the convention about constants stated in §9. Thus, 

(12.14) E{\XU)(T)\*»} ^ C(l + |x|2*) + c\TE{l + \Xie)(y)\2»} dy, 

and from this and GronwalPs lemma (12.1) follows. 
We note that hypothesis (6.12) is used only in Lemma 12.1 and nowhere 

else in the proof of the theorem of §6. Hypothesis (6.11) is not used fully 
in Lemma 12.1 but will be in §15. Similarly, (6.9) will be used fully in 
§14. 

13. Decomposition into local problems. In order to effect the desired 
decomposition of «(e)(<r, r, x, j>), the solution of (10.21), and reduce the 
estimation problem (6.25) into local problems over time intervals of 
length A=£7/4 , we need some a priori information about the behavior of 
solutions of (6.21). This information is summarized in the following. 

LEMMA 13.1. Let £t?a be defined by (6.20) and assume that the hypotheses 
(6.22) hold. Then (6.21) has a unique classical solution u(o, T, X) for 

f(x) e C*'"(Rn), a^O, and there is an a > a such that w(c, r , x) e C4>*(Rn)9 

O ^ a ^ r ^ r . 

The proof of this lemma can be obtained by the Itô calculus [12]. 
Without the factorization hypothesis (6.22 (i)) one must use the theory of 
Oleinik [27], [28]. 

Before proceeding with the decomposition into local problems we prove 
the following lemma which says that, except in an initial layer,/(x, y) may 
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be replaced by 

381 

f(x)=JF(dy;x)f(x9y) 

in studying (6.1) (or (10.21)). This lemma along with (6.25) disposes of 
(6.24). 

LEMMA 13.2. Let 0^or<r^ T and define uie) and ü{e) as the solutions of 
(10.21) with data f(x9 y) andf(x) respectively. Suppose fix, y) is measurable 
and in C1,a{Rn), a^O as a function ofx. Then, for some â > a , 

/ n „ -. \uie\a, T, x, y) — ü{e\a, T, X, y)\ -
(13.1) lim sup -— v ' 9J' . *n = 0. 

«-•0 x.y 1 + |x|a 

PROOF. For this lemma we require that A=e7/4 which implies that 
A/fi->0, A/e2-*oo as e->0. Assume o<r—A for e<e0 say. 

The following inequalities are easily verified. 

\uu\a, r, x, y) - ü{e\a, r, x, y)\ 

= f P(,)(cr, T - A, x, y, dx, dp) 

(13 2) X [M<8>(r "" A ' T ' *' ^ "" "(6)(r " A ' T ' *' ^ 

<: I [p{>\o, T - A, x, y, dx, dy)[u{\r - A, r, x, y) - ƒ ( * ) ] I 

+ I ƒ P(e)((T, r - A, x, y, dx, dy)[ü{e\r - A, r, x, y) -f(x)] 

From (10.24) we obtain 

I !P{°\O, T - A, x, y, dx, dy)[uu\r - A, r, x, y) - ƒ(*)] I 

fa{'\o, T - A, x, y, dx, dy)\uJ- , y; xj - / ( x ) l 

+ -\ (p('\a,r-^x,y,dx,dy) 

x f Jp{e\r-A,T,x,y,di,dri) 

x FA 4 , f, v ) «o.i r — i — > £ n ) ds 

jp('\a, r - A, x, y, dx, dy)(l + \x\°) I Cpfêj 

A i r i 
+ C • - J Pu\a, T - A, x, y, dx, dy)(\ < \x\') 

(13.3) 
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Here we have employed (6.8), (6.2), (10.9), (11.2) and Lemma 12.1. 
The second term on the right side of (13.2) is estimated in the same way 
as (13.3). From (6.9) and the assumption A=s7 /4 the assertion of the lemma 
follows. 

We proceed now with the proof of (6.25) that is, we shall show that the 
solution w(e) of the final value problem (10.21) with data/(x) and the solu­
tion w(cr, T, x) of (6.21) with data/(x) also, (recall «5? is independent a 
here; cf. remarks in §9) satisfy for some 5c>a the estimate 

(13.4) 
\ü(e)(a9 r, x, y) - u{a9 r, x)| ^ £1/4C(1 + |xf), 

0 ^ a ^ r ^ T, 

where/(x) e C***(Rn), oc^O. For this purpose we introduce the notation 
with A=£7 / 4 , 

(13.5) 
ak = a + fcA, k = 0, 1, 2, • • • , m, a0 = or, (7m = r, 

* < > * , ex, x, y) = X*\ 

where we assume, without loss in generality, that (T—a)IA=m takes 
integer values. This notation is employed throughout in the sequel. The 
following can be verified easily. 

| i / ( £ )((7,T,X, J>) - u ( ( 7 , T , x ) | 

I m 

fc=l 

i m /• 

2 w(<7*> T, x)Pu\a9 ak9 x, y, dx, dy) 
k=lJ 

- «(or^!, T, x)P(8)(<r, (T^i, x, y, dx, d;p) 

2 Pu\o, Oic-i, *> y, dx, dy) 
k=lJ 

X I P(e)(<r*-i> °*> *> ^ df, drj)u(ak, T, f ) - w(cr^l5 r, x) 

Define « by 

(13.7) ü(ak9 r, x) = [p(dy9 x) f P(e)(<r*-i, °*> *> 3% ^ * î M * » T, f). 



19751 ASYMPTOTIC ANALYSIS OF TRANSPORT PROCESSES 383 

Then, from (13.6) and (13.7) we obtain the decomposition 

\ü{e\a9r9x9y) - u(a9r9x)\ 

^ 2 I ƒ P(e)(cr, ak_l9 x, y9 dx, dy) 

(13 8) r r "l I 
X P(£ W i , o*, x, y, dS, drj)u(ak9 r, f ) - ü(ak9 r, x) 

+ 2 pM(^ ak-i> x> y> d*> dy) \ü(ak> T> x) - u(ak_l9 T, x)|. 

Thus, to obtain the estimate (13.4) we shall estimate separately the two 
sums on the right side of (13.8). For jfc=l, 2, • • • , m let 1$ and 1$ be 
defined by 

' I f tx , y) = I f Pu\*9 ok_l9 x, y, dx9 dy) 
(13.9) U 

X J ̂ ( eW-i> er»,x,y9 d£9 drj)u(ak9r9 £) - ü(ak9r9x)\ 

(13.10) I&(x) = \ü{ak9 r, x) - ii((TM, r, x)|. 

The estimation of (13.9) and (13.10) is carried out in §§14 and 15. The 
titles of these sections derive from the significance of the two sums on the 
right side of (13.8) as we mentioned in §9. At the end of §15 we shall 
return to (13.8) and complete the derivation of the estimate (13.4). 

14. Local independence. In this section we prove the following result. 

LEMMA 14.1. l[%(x9 y) of (13.9) satisfies 

(14.1) 7 ^ ( x ' y) = **C(1 + | x |"} ' k = 2 ' 3 ' " " ' ' m ' 
Ii'lix, y) ^ eC(l + |x|"), â > a, integer. 

PROOF. Let g{k)(x)=u(ak, r , x) with fix) e C*>\Rn) so that g(k)(x) e 
C*>*(Rn) for all fc=l, 2, • • - , m and O ^ o ^ r ^ T . Define H48) by 

(14.2) w£ W x , afc, x, y) 

= f P(£)(cr*-i, cr„ x, y, dx, dy)g{k\x). 

From (13.7) we have 

ü(ak9 T, x) = f F(dy9 x) \P{e\ak_l9 ak9 x, y, dx9 dy)g{k\x) 
(14.3) J J 

= J P(dy; X)M4£)((X*-I> o**, x, y). 
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Thus , 

(14.4) 

' # ( * , y) = I ƒ Pie\o, <r*-i, x, y9 dx9 dy) 

x L ? W i > ak9 x, y) - lP(d£; x)wk
e)(ak_l9 ak9 x, £) 

We introduce additional notation as follows. 

(14.5) ** ̂  ak~19 °ky *' •K) = fP<£)((T' °*-1 ' x' y' d*9 d^ 
X wk\ok_l9 ak9x, y). 

(14.6) vko(a9 ak_l9 ak9 x9 y) = IP0 \JS=11— > >̂ d^ x) w* W i > <**> *, 9)> 

v*\<*> °*-i> <**> x> y) = \P(e\<y, *k-i> *> y , dx9 dy) 
(14.7) J 

X j i*(d£; x ^ ' W i , crt> x, Ç). 

From the parametrix identity (10.24) we obtain the identities 

vk
e\a9 ak_l9 ak9 x9 y) = vk

e^(a9 ak_l9 ak9 x, y) 

(14.8) + i £ * " ƒPu)(<r, 5, x, y, dx9 dy)F, (^, x, y^ 

x v*>.i(s> ak-i> ak> z> y), 

vk
e\a9 ak_l9 ak9 x9 y) 

= ü(ok9 T, x) 
(14.9) 

+ - J J PieV, s> x, y9 dx9 dy)Fi ( ^ , x, y \ üti(ak9 r, x). 

Similarly, from (10.23) we obtain the identity 

w l ' W i , ok, x, y) = gM(x) + i £ * J p 0 ( i ^ » = l , j , , djp; x) 

(14.10) 
F* ("1. *> PJ wk%, ok, x, y) ds. 
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From (14.4), (14.5)-(14.7) and the identities (14.8) and (14.9) we have 

H'lix, y) = \vk
e\a9 tf*-i, ok, x, y) - v[e\a, crM, ak, x, y)\ 

^ \v{j$(<x, (TJC-I, ork9 x, y) - ü(ok, r, x)\ 

X [4o(s, or*.!, cr*, x, y) - w(o*, r, x)]§, ds . 

Furthermore, from the definition of v^ and w and from the identity 
(14.10) it follows that 

KoV, <7*-i, o*> *, J) - "(<**, T, x)\ 

X J P „ ( ' ~ " " , * <«; x) F, ( | , x, c) »i:i(s, »„ x, £) ds I 

-|;UMi72-**,')-*H 
x F J -^, x, H w£}(«,<**> x, Qdsl. 

Substituting this into (14.11) and using (14.10) again we obtain finally 
the desired inequality for estimating li'l: 

n°l(x,y)^-e£* J*[Po^r>y>di>>x) ~ pM'>x>] 

X F,1-2 , x, H w(
k%, ak, x, 0 ds 

(14.12) + \ I f ""1 !'" PM(a, s, x, y, dx, dy)Fi U%, x, y) 
e I Jo Jojc-i \e / 

x {ƒ [p0 Ç-=r > * dtm> x) - W ; *>] 

x F, / ~ , x, H w£}(*, **> *> Öj dtdsy 

Note that fc=l the second term on the right side of (14.12) is zero. 
Let us estimate the term with the factor \je on the right side of (14.7). 

Since A=£7/4, Lemma 11.1 tells us that \w\3(s> a> x> 0\ is bounded by a 
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power of |*|. On using hypotheses (6.2) and (6.8) we find that 

« i J ̂  v ^ 'y'd^ x) Fj\l ' *' v w*'̂ 5' °h* x' ® ds 

(14.13) ^ - A> l ^ T ^ I dsC(l + |x|5), ÖL some nonnegative integer, 
e V i \ e / 

^ £/)
4/5(A/£2)C(l + |x|5), for k = 2, 3, • • •, m, 

^ e2C(l + |x|5). 

Here we have used hypothesis (6.9) and the monotonicity of p. It is at this 
point that the full strength of (6.9) is used. For k=\ we have the obvious 
estimate ^eC{\ + \x\% 

The second term on the right side of (14.12) is estimated using Lemma 
10.1, Lemma 11.1 and Lemma 12.1. It is less than or equal to (k^2 
here) 

I r«k-i Can /f _ s\ 
~i P\ — 5 ~ I dt dsC(l + |x|a), â some nonnegative integer, 
e Jo J<rje-i \ 2e / 

^ 82C(1 + |x |5) . 

The last inequality follows from (6.9) and the monotonicity of p. The proof 
of the lemma is complete. 

Note that the results of this section are independent of the centering 
conditions (6.11) and (6.12). 

15. Local Taylor expansion. In this section we prove the following 
estimate. 

LEMMA 15.1. For fc=l, 2, • • • , m and for some â > a integer, 

(15.1) /<<>(*) = \ü(ak9 r, x) - u(ak_l9 r, x)| ^ s2C(l + |x|*). 

PROOF. Again we denote u(ak9 r , x) by gU)(x). We also recall the re­
marks of §9 concerning explicit slow-time dependence namely, that without 
loss in generality we may suppress it in the proof. Thus, the operator JSf 
in (6.21) is independent of o\ By integrating (6.21) and iterating the in­
tegral equation once,9 and recalling the definition (13.7) of w, it follows that 

I&(x) = I ƒP(dy; x)[p{<\ok_l9 ak9 x, y, dx9 dy)g{k\x) 

(15.2) _ g{k)(x) _ A j S f g ( * > ( x ) _ f" ( s _ akl)^u{s^x)ds 

Jak-i 

Here we employ the notation introduced by (13.5) with A=£7 /4 . 

9 Iteration is a legitimate procedure in view of (6.22) and Lemma 13.1. 
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Let w{
k
e) be defined by (14.2). By iterating (10.24) twice we obtain the 

identity 

= gik)(x) + -e \2 F4 ( ^ , x, y} g f(x) ds 

( 1 5 3 ) X Fjft . *> y)gj\x)\ ^ ds2 ds! 

+ h\ I I \pM(a^s^x,y,dx,dy3)FJS-l,x,y3) 
6 J<rk-iJ<Tk-iJ<Tk-i*' \€ / 

x[jP.[^9y.9dyt;x)F^fX9/) 

x \P0 r
1 "7521 y* <tyi ; * j FÏ R> *, yiJ gift*) J ^ 3 ds2 dŝ  

Hypothesis (6.2) and Lemma 13.1 as well as a mild extension of the 
estimates of §10 concerning P0, yield the result that the last term in (15.3) 
is ^C(A/e)3(l + |x|5) for some ôc>a. Using this estimate and (15.3) 
in (15.2) we obtain 

ni(x) ui-T (P(dy; x)FiU , x, y) dsgfix) I 

-&gmx))\ 

+1 h I'" f1 i w y , x)Fi(s-î > x> y) ds* 

x [ƒP(dy; x)Fj fy, x, pj g*>(x)] ^ dsx | 

+ (A/e)
8C(l + |x|a) + A2C(1 + |x|*). 

Here we have also used Lemma 13.1 and hypothesis (6.22) to estimate 

(15.4) 
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From (6.11) it follows that the first term on the right side of (15.4) 
is <:e(e2IAyC(l + \x\*)=e2C(l + \x\*). It is here that the full strength 
of (6.11) is used. Hypotheses (6.15) and (6.16) yield for the second term 
on the right side of (15.4) the estimate ^e2C(\ + \x\*). The third term is 
also 5 Ï £ 2 C ( 1 + |X|5) , a conclusion following from (6.11) and Lemma 10.1. 
The proof of Lemma 15.1 is complete. 

Note that hypothesis (6.9) was not used in this lemma as should be 
expected. 

Let us now complete the proof of (13.4). Returning to (13.8) we see 
that the lemmas of §§14 and 15 yield the estimate 

\u{e)(o, r, x, y) - u(cr,r, x)| 

(15.5) ^ [(r - a)/A]62C(l + |x|*) + eC(l + |x|*) 

= (T _ cr>1/4C(l + |x|5) + eC(\ + |x|*). 

The 0(e) term follows from the 1$ estimate in (14.1). Since O ^ T - t f ^ r 
(15.5) gives us the desired estimate (13.4). 

16. Weak convergence. From the estimates of the preceding section 
it follows that the finite dimensional distributions of Xie) converge to 
those of the diffusion Markov process X{0) with generator J§?ff given by 
(6.20). Suppose that xeUczRn a compact set. Recall that Z (e)(r) is 
continuous. In order to show that it converges weakly to X{0) it is suf­
ficient to show, according to a well-known theorem [3, p. 450], that for 
any O^a^r^T there are constants C and /9>0 such that 

(16.1) E{\XU)(T) - Xu)(a)\*} ^ C(r - o)1+p. 

Here XU)(T) denotes the process Xie)(r, 0, x, y) with xe U. We shall use 
the results of the preceding sections to prove (16.1) with /?=y. 

From the identity 

(16.2) £{lZ < e >(T) " ^ V ) ! 4 } = ƒ p ( f i ) ( ° ' a> x> * d*> dy) 

X E{\Xu)(r9 a, x9 y) - x\*} 

and Lemma 12.1, it follows that it is sufficient to show that, for O ^ a ^ r ^ 
T, 

(16.3) E{\Xu)(r, a, x, y) - x|4} ^ C(r - a)1+\l + |x|5), 

where â is some nonnegative integer. To prove (16.3) we consider the cases 
T—<r^fi7/4 and r—<r<e7/4 separately. 

Consider first the case r—a^e11*. We shall use (15.5) to obtain (16.3) 
with /J=y. For this purpose let/(x)=|x—z|4 , regarding z as a parameter, 
and denote the solution of (6.21), with this ƒ as data, by u(a, r , x; z). 
Denote by uU)(a9 r , x, y; z) the solution of (10.21) with the same data 
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f(x)=\x—z|4. From (15.5), when T—a^e7/4, we obtain 

E{\X{°\T, a, x, y) - x|4} 

= uu\o,T9x9y;x) 
<? \uu\a9 r, x, y; x) - u(a, r, x; x)\ + u(o9 r, x; x) 
£(7 - a)1+1/7C(l + |x|«) + (r - cr)2C(l + |x|*) + I$(x9y;x). 

Here we have used the fact that u(p9 r, x; X)^(T—<r)2C(l + |x|a) which 
can be obtained by Ito's calculus [12], [29] or otherwise. We have denoted 
by l[z\(x, y\ z) the quantity defined by (14.4) when k=\ and/(x)=|x—z|4. 
Note that the estimate (14.1) is too crude for our purposes here so we 
shall reconsider the estimation of l[*\. We shall show that 

(16.5) l[%x9 y; x) ^ C(T - cr)1+2/7(l + |x|*). 
This estimate and (16.4) yield (16.3) in the case r—cr^e774. 

Before proceeding to the proof of (16.5), let us show that (16.3) is valid 
also when r—(T<e7/4. For this purpose we employ the identity (15.3) 
with gik)(x)=\x—z\A

9 (TA._1=o', <yk=T. On the left side of (15.3) we obtain 
E{\X{e\r9 a9 x9 y)—x|4} by setting z=x. On the right side the first three 
terms drop out on setting z=x and the last term is less than or equal to 

(16.6) ((r - o)lefC(\ + \xf) ^ (r - <7)1+2/7C(l + |x|a), 
where we have used the hypothesis T—a<s"i. Thus, (16.3) is valid with 

Let us now prove (16.5). From (14.2) and (14.3) we obtain 

l[%x, y; x) = 

ƒ< P
u\a, a + A, x, y, dx, dy)u{a + A, T, X; X) 

(16.7) U 

- P(dl\ x)\ Pu\a, a + A, x, £, dx, dy)u(a + A, r, X; X) 

The elementary inequality 

u(a + A, r, x; x) = £{|A-(0,(T, a + A, x) - x\*} 
( 1 6 - 8 ) ^ 8u(<r + A, T, x; x) + 8 |* - x|4, 
along with the estimate u(p, T, X; X)^C(T—cr)2(l + |x|a) yield 

£ C(T - a)\l + |x|a) 

(16.9) + 8 [PU\O, a + A, x, y, dx, dy) \x - x|4 I 

+ I 8 [P(dC; x) hu\a, a + A, x, y, dx, dy) \x - x\* 
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The last two terms on the right side of (16.8) can be estimated with the 
use of (15.3) in the same manner that (16.6) was obtained. Both of these 
terms are less than or equal to 

(A/s)*C(l + |x|«) = e9/4C(l + M5) ^ (T - cr)1+2/7C(l + |x|*), 

where we have used the hypothesis r—<7^e7/4. Thus, (16.5) holds. The 
proof of the theorem of §6 is complete. 
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