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Introduction 

Let X and Y be Banach spaces, D a given subset of X, T:D^ X-> Y a 
possibly nonlinear mapping and {Xn,Pn; Yn, Qn} a suitable approxima­
tion scheme for the equation 

(I) T{x)=f (xeDJeY). 

One of the basic problems of functional analysis is to solve equation (I). 
In this paper we distinguish in principle between two notions of solvability 
of the above problem, namely: 

(A) Solvability of equation (I) in which the existence of a solution of 
equation (I) is somehow established. 

(B) Approximation-solvability of equation (I) in which a solution of 
equation (I) is obtained as a limit (or at least a limit point) of solutions 
xn of simpler finite dimensional equations 

(II) Tn(xn) = Qnf (xn e Dn, Qnfe YJ. 

Needless to say, although the concepts (A) and (B) are distinct in their 
purpose, they are not independent. In fact, as will be seen below, in some 
cases the knowledge of (A) is essential for (B) to take place. 

In the classical functional analysis, the above problem has been handled 
satisfactorily if a given equation is reducible to one in which Tis either of 
the form T=I—S with S:D^X-+X contractive or T=I-C with 
C:D^X->X compact. The contraction mapping principle, Schauder 
fixed point theorem, Leray-Schauder degree theory for T=I—C, Galerkin 
method for r=/—C and their consequences provided the basis for the 
treatment of equation (I) for these special classes of mappings. 

The main thrust of the recent development of nonlinear functional anal­
ysis has been in the direction of breaking out of the classical framework 
into a much wider field of noncompact operators such as : operators of 
monotone and accretive type; operators of ultimately compact and set-
contractive type; operators of A -proper type; and others. There are ex­
tensive surveys and treatments of the theories and applications of the 
first two classes of mappings. See, for example [5], [19], [57], [81], [98], 
for the discussion of operators of monotone and accretive type and their 
applications and [95], [122], [136] for the discussion of operators of 
ultimately compact, condensing, and set-contractive type. 

The purpose of this paper is to survey the basic results from the theory 
of .4-proper mappings developed recently in the context of constructive 
functional analysis which came about as the answer to the following prob­
lem. For what type of a linear or nonlinear mapping T is it possible to 
construct a solution of equation (I) as a strong limit of solutions xn of 
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equation (II) ? In a series of papers the author studied this problem and 
the notion which evolved from these investigations is that of an ̂ -proper 
mapping. It turned out that the 4̂-properness of T is not only intimately 
connected with the approximation-solvability of equation (I) but, in 
view of the fact that the class of yl-proper mappings is quite extensive, 
the theory of ,4-proper mappings extends and unifies earlier results con­
cerning Galerkin type methods for linear and nonlinear equations with 
the more recent results in the theory of strongly monotone and accretive 
operators, operators of type (S), Py-compact, ball-condensing and other 
mappings. In view of this, the class of A -proper mappings and its pre­
cursor, the class of Py-compact mappings, became a subject of extensive 
study by a number of authors, including Browder, Browder and Petryshyn, 
Deimling, Edmunds-Webb, Fitzpatrick, Fucik, Goncharov, Grigorieff, 
Hamilton, Nussbaum, O'Neil-Thomas, Petry, Petryshyn, Petryshyn and 
Tucker, Pokhodjayev, Potter, Stuart, Tucker, Webb, Wolf, Wong and 
others. As a result, the theory of ,4-proper mappings has been developed 
and extended in various directions. 

In this paper we survey some basic results from this theory and indicate 
their relations to earlier approximation results in linear and nonlinear 
theory of the Galerkin type methods and to the more recent results of the 
nonlinear theory involving operators of monotone and accretive type, 
Py-compact, condensing, type (S) and other mappings. 

In the course of survey the author noted that the notion of an 4̂-proper 
mapping is also closely related to the stability of the projectional method 
(II) in the sense of Mikhlin and that it enters rather naturally in the solva­
bility of elliptic partial differential equations. These and other new 
observations are included in this survey and in some cases their proofs 
are sketched. 

We call the reader's attention to the fact that for obvious reasons our 
survey makes no attempt to present the theory of 4̂-proper mappings in 
its most general form. For the sake of simplicity we present the outline 
for real Banach spaces X and Y equipped with a projectionally complete 
scheme Y although, as will be indicated below, a number of approximation-
solvability results are valid for complex Banach spaces and for more 
general approximation schemes. 

Finally, we remark that the topics which we shall treat in this paper 
are stated in the Table of Contents. 

1. .4-proper mappings and fixed point theorems for Py-compact mappings 
In §1.1 we fix the terminology and notation, introduce the definitions of 

some basic concepts used in this paper, give a historical background and 
some examples of 4̂-proper mappings and mention a couple of properties 
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that are relevant to this section. In §1.2 we outline the fixed point theory 
for incompact mappings and show that it includes the classical fixed 
point theorems for compact mappings and the recent fixed point theorems 
for ball-condensing and strictly semicontractive mappings. 

1.1. Basic facts about A-proper mappings and approximate-solvability. 
Let X and Y be real separable Banach spaces with X* and F* denoting 
their respective duals. We use "->" and **_*" to denote the strong and the 
weak or the weak* convergence respectively. Let D be a given set in X 
and T: D c X—• Y a possibly nonlinear mapping. For the sake of simplicity 
we define the notion of the A-properness of T and of the approximation-
solvability of 

(1.1-1) Tx=f (xeDJeY) 

in terms of a given projectionally complete scheme T for (X, Y). 
DEFINITION 1.1 A. The scheme T={Xn9Pn; Yn,Qn} is projectionally 

complete for (X, Y) provided that {Xn} c: X and { Yn} <= Y are sequences of 
monotonically increasing finite dimensional subspaces with dimZn= 
dim Yn for each n and Pn:X-+Xn and Qn: Y->Yn are linear projections 
such that Pnx->x and Qny->y for x e X and y e Y. 

In case Y=X9 Yn—Xn and Qn=Pn we denote the scheme {Xn9Pn; 
Xn9Pn}fot(X9X)byr0. 

It is obvious that if {<f>t}czX and {ipi}^ Y are Schauder bases, then 
there exists a natural projectionally complete scheme T=r^. Namely, 
o n e c h o o s e s X n = [<f>i9 • • • , </>n]9 Yn= [tpl9 • • •, xpn]9 

*»(*) = £(*»*#< and Qn(y) = JCri9yyy>i, 

where {OJ<=jr* andlTJc: y* are such that (Oi5 ^)=CF„ % ) = ^ with 
(w, x) denoting the value of w in X* at x in X To incorporate the Galerkin 
type methods into the framework of the y4-proper mapping theory, it is 
only necessary to assume that Pn and Qn are orthogonal projections if X 
and Y are Hubert spaces. 

In [107], [109], [110] the author investigated the type of mappings T 
for which it is possible to construct a solution xe D of equation (1.1-1) 
as a strong limit of solutions xn e Dn=DnXn of approximate equations 

(1.1-2) Tn(x) = Qnf (x e Dn9Tn = QnT\Dn). 

In [111] (see also [112]) the author introduced a wide class of mappings, 
those mappings satisfying condition (H), which proved to be very suitable 
for the study of the constructive solvability of equation (1.1-1). In [113] 
and subsequently, mappings satisfying condition (H) have been referred 
to as approximation-proper (v4-proper). 
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DEFINITION LIB. T: D ç X-+ Y is said to be A-proper with respect to 
the projectionally complete scheme Y if Tn : Dn ç Xn-+ Yn is continuous 
for each n and if {*nJxni G Dnj} is any bounded sequence such that 
Tnj{xn^g for some g in Y, then there exist a subsequence {xnj(k)} and 
x e D such that xnj{k)->x and Tx=g. 

For later use we recall the following definitions. If T:D^X-^Y, then 
T is bounded if 7X0 is bounded whenever Ô c D is bounded ; Tis compact 
if T is continuous on D and r(g) is precompact in Y whenever Q <= D is 
bounded; T is weaATy continuous on D if ;tn— *̂ implies 2X,—*TJC in Y 
for xn, x e i ) ; 7"is completely continuous if xn-^jc inXimplies Txn->Tx 
for xn, xe D; T is fa-continuous if rn: Dw <= A^-* Yn is continuous for 
each n; Tis contractive (resp. nonexpansive) if ||7x—7)/||:^/||;c—j/|| for A:, 
ƒ G D with 0 < / < l (resp. /=1); Tis proper if T~\Q) is compact whenever 
Q is compact; the space X provided with a scheme T0 with ||Pn|| = l 
for each n is called a H^-space; B(x0, r) and 2?(*o> 0 are used to denote the 
open and the closed ball in X respectively with center at x0 and radius r. 

The following result of the author [117] provides the motivation for the 
terminology " 4̂-proper" and is useful in other respects. 

PROPOSITION 1.1C. If D^X is open and T.D-+Y is continuous and 
A-proper, then the restriction ofTto any closed bounded subset of Dis proper. 

An example has been given by Fitzpatrick [39] which shows that a 
continuous proper mapping need not be ̂ -proper. The following example 
from [116] which illustrates this fact will also prove to be important in 
our discussion of the relationship between solvability, approximation-
solvability and ̂ 4-properness. 

EXAMPLE 1.1a. Let H be a real Hubert space with a complete ortho-
n o r m a l basis {' • • <£_3, <£_2, <£_!, <£o, <I>1, <f>2, * * ' } , %n= [<l>-n> * * > <f>n]> ?n 

the orthogonal projection of H onto %n and T a bounded linear map of 
H into H given by T^^fa^ for z=0, ±1 , ±2, • • •. It follows easily that 
T is a one-to-one mapping of H onto H and so is also proper. But it is not 
hard to verify that Tis not ^-proper with respect to f 0={^fw, Pn; %n, Pn}. 

Before we give some examples of ̂ -proper mappings which would indi­
cate the generality of this class, we first state the following useful property 
obtained by the author in [112]. 

PROPOSITION LID. If T:D^X-^Y is A-proper with respect to T and 
C\D-+Yis compact, then T+C is A-proper with respect to T. 

However, the following example from [116] shows that a sum of two 
y4-proper maps need not be ̂ 4-proper. 

EXAMPLE Lib. Let H be a Hubert space with a complete orthonormal 
basis {<£,}, Xn=[<f)l9 • • • , c/)n], Pn the orthogonal projection of H onto 
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Xn and T a bounded linear mapping of H onto H given by 

7 ^ = 0, r<£2 = 0, ^ 3 = ^ 2 , - - - , 7 ^ = &-i for* ^ 3 . 

It is easy to see that r i s ^-proper with respect to T0={Xn, Pn; Xn, Pn}. 
Indeed, since Tnx=Tx for x e Xn and since ||7x||^||x—P2JC|| it follows 
that T is ^4-proper with respect to T0. It is obvious that the identity I 
on H is ^4-proper with respect to T0. But 1+ T is not yi-proper with respect 
to T0. In fact, if xw=«-1/2(^1-<^2+^3+- • -+(-l)n<£n) e Xn then \\xj = 1 
and xn+Tnxn-+0 while, for n>m, \\xn—^w||2^«_1(«--w). Therefore 
/+T i s not ^4-proper with respect to T0. 

The above fact has an important bearing, for example, on the homotopy 
theorem in the generalized degree theory for ,4-proper mappings. Examples 
will be given in Chapter 2 which show that an adjoint T* of an ^-proper 
mapping T:H-+H need not be ^-proper. All this is not surprising since, 
as we shall see in Chapter 2, the ,4-properness of a mapping T e L(X, Y) 
characterizes the approximation-solvability (defined below) of equation 
(1.1-1). The following are some of the examples (others will be given 
later) of ^-proper mappings. 

EXAMPLE 1.1C. If D<^X is closed and C.D-+X is compact, then 
T=I—C is ^4-proper with respect to T0. 

EXAMPLE l.ld. If X is a n^space, Z><=X closed, C:D->Z compact 
and S:X-+Xcontractive, then 7W— S—C:D->Xis ^-proper. 

It is unknown if T=I—S—C is v4-proper in a general Ili-space X if 
S is defined and contractive only on D even when D=B(0, 1). See §1.2 
for further discussion of this case. It was noted above that the notion of 
^4-properness evolved from the concept of a Projectionally-compact (P-
compact) mapping introduced by the author in [107] for the constructive 
approach to fixed point and eigenvalue problems for noncompact maps 
and to surjectivity theorems for monotone maps acting in Hubert spaces 
(see [89], [10], [140], [108]). The definition of P-compactness used in 
[107] can be stated by 

DEFINITION LIE. A map F:D<^X->X is P-compact if and only if 
TX=F—2.I is v4-proper with respect to T0 for each A>0. 

EXAMPLE l.le. If H is a Hubert space and F.H-+H is bounded and 
monotone decreasing (i.e. (Fx—Fy, x— y)^0 for x.yeH) and either 
continuous, demicontinuous, or weakly continuous, then — F is P-
compact (see [108]). 

We add in passing that the study of monotone mappings was initiated 
independently by Vainberg, Kacurovskiï and Zarantonello (see [19]) and 
was then extensively studied by Minty, Browder, Rockafellar, Brezis and 
many others (see [19], [57], [81] for references). 
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To introduce our next example, we first recall that if Q is any bounded 
set in Z), then the ball measure of noncompactness x(Q) of Q with respect 
to X is defined to be 

%(Q) = inf{r > 0 | Q can be covered by a finite number of balls with 
radii ^r and centers in X}. 

It follows that %(Q)=0 if and only if Q is compact. The measure %(Q) 
has a lot of useful properties (see [136]). We say that a continuous boun­
ded mapping F:D^X-+X is k-ball-contractive if x(F(Q))^kx(Q) f o r 

every bounded Q <= D and some &^0. We see that F is compact if and 
only if F is O-ball-contractive. Following Sadovsky [136] we say that 
FiD^X^X is ball-condensing if %{F(Q))<%(Q) whenever g<=D is 
bounded and #(0)5*0. Of course, every A>ball-contractive map with k<\ 
is ball-condensing but the converse is not true (see [93]). Ball-condensing 
mappings have been recently a subject of extensive study (see [136], [122]). 
The following result is due to Webb [156] although in a somewhat dif­
ferent form it was already contained in [93]. 

EXAMPLE l.lf. If X is a I^-space and F:D^X->Xis ball-condensing, 
then T=I—Fis ^-proper. 

EXAMPLE l.lg. Let X be reflexive with T1={Xn9Pn; Yn,Qn} pro-
jectionally complete for (X9 X*) where Qn=PÏ:X*-+Yn=R(Qn). Let 
T.X-+X* be strongly monotone, i.e. (Tx-Ty, x—y)^\\x-y\\2 for x, 
y e X and some c>0, and either continuous, demicontinuous, or weakly 
continuous, then Tis ^-proper with respect to I\. 

For the case when X is a Hubert space and T is also bounded when it is 
demicontinuous the above fact was proved by the author [108], [109]. 
For bounded and demicontinuous T.X-+X*, it has been proved in [24] 
while for unbounded demicontinuous T:X-+X*9 it follows from a more 
general result in [119]. 

Following Browder [19] we say that T.X-+X* satisfies condition (S) 
whenever xn-^x and (Txn—Tx, xn—*)-•() imply that xn-+x. The following 
fact was proved in [19]. 

EXAMPLE 1.1 h. Let X be as in Example 1.1 g. If T: X-+X* is a bounded 
continuous map which satisfies condition (S), then T is y4-proper with 
respect to IV 

We may add that Browder proved the above result for the case when 
the approximation scheme is given by an injective scheme but the same 
argument works for projective schemes. Moreover, if T is bounded, it 
suffices to assume that T is demicontinuous. 

To complete our initial list of examples of ^-proper mappings, we 
first recall that a continuous function jbi:R+={t\t'^0}-+R+ is called a 
gauge function if /*(0)=0 and /n is strictly increasing. If J.X-+X*, then 
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J is said to be a duality mapping of X with gauge function /A if 

(Jx, x) = N | M M ) and \\Jx\\ = ,1(11*11) for xeX 

If ft(t)=t we say that ƒ is a normalized duality map. If Z* is strictly convex, 
then ƒ is uniquely determined by fx and if X is also reflexive, then J is 
demicontinuous. Moreover, if Zand X* have Property (H) and, in particu­
lar, are locally uniformly convex, then/is continuous (see [12] and [22]). 
Recall that X has Property (H) if X is strictly convex and such that if 
xn-^x and ||*W||-HM| > then xn-+x in X. The following fact proved by the 
author in [117] plays an essential role in the generalized topological 
degree theory for mappings T.D^ X^>X*. 

EXAMPLE 1 .li. If X is reflexive and X and X* have Property (H), then 
the normalized duality mapping J: X-+X* is ^4-proper with respect to I \ . 

The above examples (more complicated ones will be discussed later) 
indicate that the class of v4-proper mappings is quite general and con­
sequently any result one can obtain for ^-proper mappings will include 
many results obtained for various classes usually by different and, as a 
rule, nonconstructive methods. 

It was noted above that in trying to characterize the class of mappings 
T for which a solution x G D of equation (1.1-1) can be obtained as a 
strong limit of solutions xn e Dn of equation (1.1-2) the author was led to 
the notion of an ^-proper mapping. To state the results concerning the 
approximation-solvability mentioned in the Introduction precisely and 
to indicate the intimate relationship of the ^4-properness of T to the con­
structive solvability of equation (1.1-1) via the projection method (1.1-2) 
(or even more general approximation methods) we need the following. 

DEFINITION 1.1F. (a) Equation (1.1-1) is uniquely approximation-
solvable with respect to V if there exists an «0=1 such that equation 
(1.1-2) has a unique solution xn e Dn for each n^n0 such that xn-+x and 
x is the unique solution of equation (1.1-1). 

(b) Equation (1.1-1) is strongly (resp. feebly) approximation-solvable 
with respect to T is there exists «0=1 such that equation (1.1-2) has a 
solution xn G Dn for each n^.n0 such that xn-+x G D (resp. xnj-+x for 
some subsequence {xnj}) and T(x)=f. 

Chapters 2 and 3 and part of Chapter 4 are devoted to the survey of 
results concerning the relationship of the ^4-properness of T to the unique 
or strong approximation-solvability of equation (1.1-1). Applications to 
various abstract and differential equations are considered. 

REMARK 1.1-1. It was noted in the Introduction that for the sake of 
simplicity we survey the results from the theory of ^4-proper mappings 
T for the case when the ^4-properness of T is defined in terms of projec-
tionally complete schemes. However, many results in this theory are known 
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to be also valid when the >4-properness of T is defined in terms of more 
general approximation schemes. The following definition of an admissible 
scheme illustrates the type of generality we have in mind, although other 
and still more general schemes have also been used (see [24], [115] for 
details). 

DEFINITION 1.1G. Let {En} and {Fn} be two sequences of oriented 
finite dimensional spaces with d imis w =dimP n and let {Vn} and {Wn} 
be two sequences of continuous linear mappings with Vn mapping En 

into Zand Wn mapping Y onto Fn such that {Vn} and {Wn} are uniformly 
bounded, dist(x, VnEn)->0 for every xeX, and for some r > 0 the set 
V-\B(0,r))={xeEn\VnxeB(09r)} is bounded for each n. We call 
Tz={En, Vn\Fn, Wn} an admissible approximation scheme for mappings 
T.X-+Y. 

Note that we do not require that En and Fn be subspaces of X and Y9 

respectively, or that Vn and Wn be linear projections. Consequently, in 
addition to projective schemes considered in this paper, the schemes T3 

include injective schemes which always exist when X and Y are separable, 
finite difference schemes, and others. Moreover, a projective scheme could 
be admissible for mappings T:X^>X* without being projectionally 
complete for (X, X*) in the sense of Definition 1.1 A. 

DEFINITION 1.1H. T.X-+Y is said to be A-proper with respect to an 
admissible approximation scheme T3 if Tn= WnTVn\En-+Fn is continuous 
and if for any sequence {xnj\xnj s Enj) such that {Vn.(xn)} is bounded in 
Z a n d || Tn.(xnj)— Wnj ƒ || -*0 for some ƒ in F, there exist {xnj(k)} and x in 
Xsuch that Vnmxnj{k)->xin Xand T(x)=y. 

In a similar fashion one defines the approximation-solvability concepts. 
The case when T is defined on a proper subset D of X can be handled 
similarly. It is known (see [24], [112], [115]) that many results obtained 
for v4-proper mappings given by Definition 1.1B carry over to mappings 
given by Definition 1.1H. See also a series of papers by Grigorieff, Jeggle, 
Wolf and others, where the ^4-properness is studied in terms of the notion 
of a discrete convergence introduced by Stummel [145]. 

Reading this article the reader should always keep in mind the fact that 
we are usually given not only the operator T:D^ X-> Y but also an approxi­
mation scheme Y with respect to which T may or may not be yl-proper. 

1.2. Fixed point theory for P-compact and generalized P-compact 
mappings. In this section we outline in chronological order some basic 
facts obtained in the theory of P-compact and generalized P-compact 
(or Py-compact) mappings whose study was initiated by the author in 
[107] and in [111], respectively, and continued by the writer (see [108], 
[106]) and a number of other authors (see [24], [30], [31], [34], [39], 
[77], [101], [114], [146]). 
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The first result in this direction was established in [107], [108] by a 
simple use of a retraction argument and the Brouwer fixed point theorem. 

THEOREM 1.2A. Suppose T:B(0, r)<^X->X is bounded and P-compact 
with respect to T0, and that for some /u>0 the following is true: 

(irf) IfTx=oLX and x e dB(0, r), then a ^ p. 

Then there exists x0 in 2?(0, r) which satisfies the equation 

(1.2-1) Tx - fix = 0; 

if (rr<) holds on dB(0, r) (Le., if TX=OLX and x e dB(0, r), then a</f), 
then equation (1.2-1) is feebly approximation-solvable with respect to T0, 
and strongly approximation-solvable ifx0 is unique. 

If ^ = 1 , then the second part of Theorem 1.2A implies the constructive 
existence of a fixed point of T in B(0, r) and thus includes the result of 
Krasnoselsky [69] concerning the convergence of the Galerkin method 
for the case when T is compact (see [72] for earlier contributions). 

REMARK 1.2-1. Condition (nf) is implied by any one of the following: 
(Al) \\Tx-x\\*^\\TxV-\\x\\* for x e dB(09 r) (used in [2]). 
(A2) (Tx,Jx)<:(x9 Jx) for xedB(0,r) (used in [67] for X=H and 

ƒ = / ) . 
(A3) Tx G B(09 r) for x e dB(0, r) (used in [135]). 

Consequently, since every compact T:B-*X is P-compact, the fixed 
point theorems of Schauder [138], Rothe [135], Leray and Schauder 
[80], Altman [2] and Krasnoselsky [67] follow from Theorem 1.2A. 
Moreover, the theorem of Kaniel [62] for quasicompact T follows also 
from Theorem 1.2A. We add that Theorem 1.2A was used in [106], 
[108] to deduce the constructive versions of the surjectivity theorems of 
Minty [89], Browder [10] and Shinbrot [140] for TX=X-A where A>0 
and — A:H->H is monotone and bounded and either continuous, demi-
continuous, or weakly continuous. 

It was shown in [106] that Theorem 1.2A remains valid if the bounded-
ness assumption on Tis replaced by the weaker condition: 

(A) There exists c>0 such that ifTn(x)=Ax holds for x e XnndB(09 r) 
and any n with A>0, then X^c. 

It follows from the strengthened version of Theorem 1.2A that we have 

THEOREM 1.2B. Suppose T.X-+X is P-compact and {cP}={c(rP)} and 
{kv} = {k(rj)} are sequences with kp->co as rv-+oo such that: 

(Ar) If PnTx-Xx=Pnf holds for x e dB(0, r j , f e 5(0, r j and any n 
with A>0, then X^cv. 

(liv) \\Tx-r}x\\ ^kPfor rj^fi, x e dB(0, rv) and some / />0 . 
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Then the equation 

(1.2-2) Tx-i*x=f (feX) 

is feebly approximation-solvable for each f G X. Equation (1.2-2) is strongly 
approximation-solvable if it is uniquely solvable. 

The following corollaries of Theorem 1.2B illustrate its generality and 
practical usefulness. 

COROLLARY 1.2C. IfT: X->X is P-compact, bounded and \\ Tx\\/\\x||->0 
as \\x\\->ao9 then for any given /u,>Q the conclusions of Theorem 1.2B hold. 

COROLLARY 1.2D. If T:X-+X is P-compact and (Tx, Jx)<:(T(0), Jx) 
for xe X, then for any given ju,>0 the conclusions of Theorem 1.2B hold. 

Following Granas [47] we say that T:X-**X is quasibounded if there 
exist M>0 and q0>0 such that | | 7X | | ^M| | JC | | for | | J C | | ^ 0 . If T is quasi-
bounded, then its quasinorm \T\ is given by 

m = inf ( sup E*ï\ 
a0^<oollM|^<z ||x|| j 

It was shown in [47] that if T has an asymptotic derivative T^ (see §3.3), 
then T i s quasibounded and iri^HT^H. Another corollary of Theorem 
1.2B is the following generalization of the result in [47]. 

COROLLARY 1.2E. If T.X-+X is P-compact and quasibounded, then 
for each /*>\T\ the conclusions of Theorem 1.2B hold. 

It was noted by the writer in [111] that if one is interested only in fixed 
point theorems for T:D<^X-+X, then it suffices to assume that T is 
P-compact. This observation led to the class of Py-compact mappings 
defined in [111] as follows. 

DEFINITION 1.2F. Given y^O. T: D <= X-+X is said to be a generalized 
P-compact or Py-compact if for each X dominating y (i.e. A^y if y > 0 
and A>7 if y=0) the map 7T

A=77—A/is ^-proper with respect to T0. Thus 
T is P-compact if and only if T is P0-compact. 

The study of Py-compact mappings, which include P-compact mappings 
when y=0, was further continued in Petryshyn and Tucker [129], Deim-
ling [30], Edmunds and Webb [34], Fitzpatrick [39], Hamilton [52], 
Goncharov [46], Grigorieff [50], Petryshyn [111], [114], Tucker [146], 
Wong [158], and others. 

Using the Brouwer degree theory, Petryshyn and Tucker [129] ob­
tained the following generalization of Theorem 1.2A. 

THEOREM 1.2G. Let D be a bounded open subset of X with 0 e D. 
Suppose T.Dcz X-+X is Py-compact such that for some fixed ju dominating 
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y the map T satisfies conditions (irf) and (A). Then the conclusions of 
Theorem 1.2A for equation (1.2-1) hold. 

REMARK 1.2-2. In the actual statement of Theorem 1.2G in [129] 
it was assumed that D is convex. However, the degree argument used in 
[129] to prove Theorem 1.2G never used the convexity of D. The latter 
was only used in deducing various special cases of Theorem 1.2G under 
various boundary conditions where sometimes the convexity of D must 
be assumed. 

COROLLARY 1.2H. Jf D is as in Theorem 1.2G and T.3-+X is Px-
compact and satisfies conditions (irf) and (A), then T has a fixed point x0 

in D; if(ir^) holds on dD, then the equation Tx—x=0 is feebly approxima­
tion-solvable, and strongly approximation-solvable ifx0 is unique. 

The existence part of Corollary 1.2H has also been reestablished by 
different arguments in [24], [46]. Corollary 1.2H holds, in particular, 
when (nf) is replaced by any one of the conditions in Remark 1.2-1 if D 
is convex. 

Corollary 1.2H and the assertion in Example l.If imply the validity of 
the following result, assuming in the next corollary and in what follows 
that A" is a I^-space. 

COROLLARY 1.2I. If D is as in Theorem 1.2G and T.D-+X is ball-
condensing and satisfies condition (nf), then the conclusions of Corollary 
1.2H hold since T is P^compact. 

We note that while the approximation-solvability aspect of Corollary 
1.21 is new, its existence part follows from Proposition l in [122]. In 
case D is also convex and T(D) c D9 the existence result was first obtained 
by Sadovsky [136] for general X. 

In [68] it was shown that if G is a closed, bounded convex subset of X, 
S contractive and C compact on G, then T=S+C has a fixed point in G 
providing the following restrictive condition holds : 

(K) Sx + Cy E G for all x and y in G. 

The recent contributions by many authors (see [122] for the description 
of latest results and references) have extended the initial existence result 
of Krasnoselsky in various directions and to more general mappings, 
including those of semicontractive type introduced by Browder [12] (and 
Kirk [66] in a somewhat different manner). 

In this section we examine some of these classes of mappings from the 
viewpoint of v4-properness and Py-compactness and in that context out­
line some of the results obtained in [39], [15], [154], [158] while others 
will be discussed in Chapter 5. 
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Using Corollary 1.2H, Proposition 1.1, and the /^-compactness of 
T=I—S:X-+X established by the author in [110] whenever S.X-+X is 
contractive, the following essentially constructive fixed point theorem was 
obtained in Petryshyn and Tucker [129] under very general and easily 
verifiable boundary conditions. 

COROLLARY 1.2J. Let D e l bounded and open with Oe D, C:D^>X 
compact and S:X-+X contractive. If T=S+C satisfies condition (rrf), 
then Thas a fixed point x0 in D; ifirr^) holds on dD, then the equation 

(1.2-3) Sx + Cx - x = 0 (xeD) 

is feebly approximation-solvable, and strongly approximation-solvable if 
x0 is unique. 

For mappings T of the form T=S+C, with S contractive on all of X9 

Corollary 1.2J appears to be the most general result from which one can 
obtain the constructive existence of a fixed point if one knows that T has 
at most one fixed point in D. However, if S is not defined on all of X, then 
even when D=2?(0, 1) it is as yet unknown whether the mapping I—S: 
J5(0,1) aX-+X is ^4-proper when S is contractive on B(0, 1) and X is a 
general r^-space. 

It was shown in [129] and independently in [93] that when S:B(0, r)->X 
is contractive with / < £ , then 7—5:5(0, r)-+X is ^-proper. This follows 
from the fact that the radial retraction R of X onto B(0, r) is such that 
\\Rx—Ry\\ ^2\\x—y|| for x, y G A" and thus S can be extended to a contrac­
tion on all of X. Consequently, Corollary 1.2J remains valid in this case 
under the assumption that S and C are defined only on B(0, r) (see [114]). 
If le [£, 1), then the ^4-properness of I—S:B(0,r)-+X takes place if 
either X is reflexive and has a single-valued weakly continuous duality 
mapping (see [117]) or if X has the so-called ball intersection property 
(see [96]). In particular, Hubert spaces and lv spaces for 1 < / ? < O O have 
both weakly continuous duality map and ball intersection property. 

In view of the above discussion the following analogue of Corollary 
1.2J has been obtained in [114] as a corollary of a slightly more general 
Theorem 1 in [114]. 

COROLLARY 1.2K. Suppose X is reflexive, X* strictly convex, and 
J'.X-^X* is weakly continuous. IfS:B(0, 1)-+X is contractive, C:B(0, l ) -* 
X is compact and T=S+C satisfies condition (nf) on dB(0, 1), then the 
conclusions of Corollary 1.2J hold. 

It was shown by Browder [12] that if in Corollary 1.2K one replaces 
the contractiveness assumption on S:B-+X by the condition that S be 
nonexpansive on B(0,1), then even when X=l2 and T=S+C maps 
j5(0, l ) c /2 into B(0, 1), the mapping T may fail to have a fixed point in 
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5(0,1). Indeed, following Granas [48] define S:B(0, l)c/2-*/2 and 
C:B{0, 1 W 2 by S(*)=(0, xl9 x2, • • •) and C(x)=(V(l-||_x||2), 0, 0, • • •) 
and note that S is nonexpansive, C is compact, T=S+C:B-*B but Thas 
no fixed point in B. However, if one assumes that C is completely con­
tinuous and X is uniformly convex, then the existence of a fixed point 
for T=S+C:D-^X has been established depending on the nature of D 
and the conditions satisfied by T on dD (see [122] for latest results and 
references). 

Although, under certain conditions on X9 the theory of Py-compact 
and ^4-proper mappings has been used (see [34], [39], [114] and Chapter 
5) to obtain existence of fixed points for mappings T:B<zX-+Xofthe form 
T=S+C, where S is nonexpansive and C completely continuous on B 
or even for T semicontractive, the constructive aspect of the theory is 
lost, that is, even when we know that T has a unique fixed point in B 
we cannot obtain it as a strong limit of solutions xn G Bn of the approxi­
mate equation Tn(xn)=xn. In view of this, we will not dwell in this section 
on the existence results that are obtainable by means of the theory of in­
compact mappings. An interested reader should consult the original papers. 

In [6] Belluce and Kirk introduced the notion of a generalized contrac­
tion which lies between contractive and nonexpansive mappings and which 
is defined to be a map S:DczX-+X such that to each x e D there exists 
OL(X) G (0, 1) such that \\Sx—Sy\\^(x.(x)\\x-y\\ for all y in D. Extending the 
result of the writer [110], it was shown by Wong [158], using the argu­
ment of Kirk [66], that if D=X and S: X-+X is a generalized contraction, 
then T=I—S is ^-compact. In [42] Fitzpatrick established a similar 
result for generalized contractions defined only on closed convex subsets 
D of X. However, he was not able to show the y4-properness of T:I—S: D-* 
X for all points, but only at specific points. Nevertheless, the latter fact 
suffices to establish the constructive existence of fixed points of S since 
a careful reading of the proof of Theorem 1 in [107] (i.e., Theorem 1.2A 
for fi=1) reveals its validity under the assumption that Tbe Px-compact at 
0. To clarify this remark, the following definition has been used in [42] 
(see also Definition 3' in [121] and [52]). 

DEFINITION 1.2L. T:D^X-+Y is said to be A-proper at a given 
g0 G Fif any bounded sequence {xnj} such that xnj G Dnj and Tnj{xn^g0 

has a subsequence which converges to x G D and Tx=g0. 
Using arguments similar to those in [66], the following lemma has 

been established in [42]. 

LEMMA 1.2M. Let X be a reflexive Tl^space, DaX closed and convex, 
S:D-+X a generalized contraction and g0 e X such that S(x)+g0 e D for 
all x in D. Then T=I—S: D-+X is A-proper at g0. 



1975] ^-PROPER AND PSEUDO-/4-PROPER MAPPINGS 237 

Using Corollary 1.2H (with T Pj-compact at 0) and Lemma 1.2M, 
Fitzpatrick proved in [42] the following 

THEOREM 1.2N. Let X be a reflexive H^space, D<^X open, bounded 
and convex with 0 e D9 and S: D-+D a generalized contraction. Then S has 
a unique fixed point x0 e 3 and if x0 $ dD then the equation Sx—x=0 is 
uniquely approximation-solvable. 

We add that the approximation-solvability result of Theorem 1.2N is 
new but the existence part follows from a result of Kirk [66]. 

REMARK 1.2-3. In view of a result in [158], Corollary 1.2J remains 
valid if we weaken the condition on S:X-+Xto that of being a generalized 
contraction but strengthen the condition on X to that of being reflexive. 

Instead of considering the sum S+C of the above mappings we may 
consider mappings formed by intertwining of mappings of the above type 
but with a stronger assumption on the second variable. Indeed, let X be 
reflexive and D e l bounded, open and convex. Following Kirk [66] we 
say T:3-+X is strongly semicontractive if there exists a mapping V:Xx 
3-+X such that T(x)= V(x, x) for x e 3 and 

(i) for each ƒ e 39 V(*9y):X-+Xis a generalized contraction. 
(ii) if {xn}<=X is bounded and {yn}^3 such that yn-*y09 then 

V(xn9yn)-V(xn,y0)-+0. 
The following constructive version of the fixed point theorem in [66] 

has been obtained in [39], [158] by using Corollary 1.2H and the iV 
compactness of T. 

THEOREM 1.20. IfX and D satisfy the above conditions and T: 3->X is 
strongly semicontractive and satisfies the corresponding conditions on dD9 

then the conclusions of Corollary 1.2H hold. 

In [15] Browder obtained an existence result similar to the above theo­
rem, where X was assumed to be uniformly convex while the condition 
(i) was replaced by the assumption that V(-9 y):X-+X is nonexpansive 
for each y in 3. For further results for intertwining mappings see [12], 
[42], [66], [154] and Chapter 5. 

REMARK 1.2-4. The following observation is perhaps of some interest. 
It follows from Krasnoselsky's result that if D is an open, bounded, 
convex set in X with 0 in D, S contractive on 3 and C compact on 3 
such that condition (K) holds, then there exists x0 e 3 such that x0= 
Sx0+Cx0. To the best of my knowledge there is no way of constructing 
this fixed point even when we know that x0 lies in D and is unique. 
However, if we assume that X is a reflexive E -̂space and C is completely 
continuous on 39 then it is easy to show directly that, in view of condition 
(K), T=S+C: B-+Xis ^-compact at 0. Since Tmaps D into D and 3 is 
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convex, T satisfies condition (wf) on dD. Consequently, the conclusions 
of Corollary 1.2H hold; and if x0 e D is a unique fixed point of T, then 
the solutions xneDn of Tn(xn)=xn are such that xn-+x0, i.e., a fixed 
point of T—S+C can, in fact, be constructed. 

Other fixed point theorems which are known to be true for compact 
maps have been extended to P-compact mappings (see [31], [114], 
[146]). It should be noted, in particular, that the Leray-Schauder fixed 
point theorem involving a family C(x,t):Dx[0, l]-^X of continuous 
compact mappings has been extended in [146] and under different con­
ditions in [34] to a family C(x, t) of P-compact mappings without the use 
of the degree theory (see [34], [146] for details). 

Structure of fixed point sets. Suppose D is a given subset of X and 
T: D^-X is a suitable continuous mapping with a nonempty set of fixed 
points F(T) <= D. If F(T) does not consist of a single point, the question 
when is F(T) a continuum (i.e., nonempty, compact and connected set) 
arises. In the case of compact, proper, and k-set contractive mappings 
on general Banach spaces this question has been investigated by Aronszajn, 
Stampacchia, Krasnoselsky and Sobolevsky, Browder and Gupta, 
Vidossich, and Petryshyn (see [42], [153] for earlier literature). For Pi-
compact and ^4-proper mappings this question was studied by Deimling 
[30] and Fitzpatrick [39], [42]. 

If it cannot be assured that a given operator has a unique fixed point, 
the general idea is to approximate this operator by more "regular" ones 
in a sense which will be made precise below. In this section we present the 
first theorem of Deimling [30] which provides sufficient conditions for 
F(T) of a Pi-compact map T to be a continuum. The interesting feature of 
the proof of this theorem is that it uses only Corollary 1.2H and no degree 
theory. 

THEOREM 1.2P. Let D^Xbea bounded, open and convex set with O e i ) , 
T: D-+X a continuous P^compact map such that T(dD) is bounded and the 
boundary condition (TT^) is satisfied. Suppose {Tn} is a sequence of continuous 
Px-compact mappings of D into Xsuch that: 

(RI) ôn=sup{\\Tnx-Tx\\ :x e 25}-*0 as /z->oo. 
(R2) The equation x=Tnx+fhas at most one solution if ||ƒ | |^ô n . 
Then the set F(T) is a continuum. 

An immediate corollary of Theorem 1.2P is the following result. 

COROLLARY 1.2Q. Suppose T.D-+X is a nonexpansive P^compact 
mapping which satisfies condition (Jif ) on dD. Then F{T) is a continuum. 

By using the degree theory for continuous y4-proper mappings, Theorem 
1,2P was extended to the case when D was no longer assumed to be convex. 
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This second theorem together with some of its corollaries will be discussed 
in Chapter 4 in conjunction with analogous but more general results ob­
tained by Fitzpatrick [42]. 

Positive P^compact operators. Let AT be a cone in X and introduce a 
partial ordering in X which is compatible with the vector structure of X 
by letting x^y if and only if y—x e K. Hence x£y means that y—x $ K. 
An operator T: D <= X^X is said to be positive if T: D nK-+K. Note that 
Kn=KnXn is a cone in Xn and we assume that the scheme T0={Xn9 Pn; 
Xn, Pn} for (X, X) is such that Pn(K) cKn for n^n0. 

We present two fixed point theorems for positive ^-compact mappings 
extending the corresponding results in Krasnoselsky [10] for positive 
compact maps. 

THEOREM 1.2R. Let BKR=B(0, R)C\K and let T:BKR-+K be P r 

compact at 0 (i.e., Tx=T—XI:BKR-+Kis A-proper at Ofor AS: 1). Suppose 
that the following conditions are satisfied: 

(pf) IfTx=cucfor some x e dBKR then a^l. 
(A) If PnTx=2.x for some xe dKRr\Xn and n9 then X^c for c>0 

independent ofn. 
Then T has a fixed point x0 in BKR. If (TT^) holds, then the equation 

(1.2-4) 7 * - x = 0 (xeBKR) 

is feebly approximation-solvable in BKR9 and strongly approximation-
solvable ifx0 is unique. 

Note that Theorem 1.2R is valid for the case when IT is ball-condensing 
and, in particular, when T is compact or of the form T=S+C with 
S:X-+X contractive and C compact. Condition (7rr) is implied by any 
one of the conditions: (SI) Tx^(l+s)x for all e>0 and xedBKR; 
(S2) Tx£x for xedBKR; (S3) | | r*-x | |^ | |r*P- |W| 2 for xedBKR; 
(S4) (Tx, Jx)^(x, Jx) for x e dBKR. 

In dealing with positive operators one is often interested in obtaining 
nonzero fixed points. Assuming somewhat stronger conditions on T one 
obtains the generalization of the corresponding results in [40] for the 
existence of nontrivial fixed points. 

THEOREM 1.2S. Let r and R be positive real numbers, r^R, r* = 
min{r,l*} and R*=mnx{r,R}. Let B%;={x e K\\\x\\<R*} and £/* = 
{x e K\r*<\\x\\<R*}. Let T.B^-^K be a bounded P^compact mapping 
such that 

(Tl) IfTx=oixfor some x in dBKR, then oc<l. 
(T2) There exists h0eK with Ao5*0 such that x- Tx-£ph0for x e dBKR 

andp^O. 
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Then equation (1.2-4) is feebly approximation-solvable in U*9 and strongly 
approximation-solvable in U* if it is uniquely solvable in U*. 

REMARK 1.2-5. The existence part of Theorem 1.2S was proved by 
Goncharov [46] for the case when T:K-+K is a bounded P-compact map­
ping. Using the retraction argument, Brouwer fixed point theorem, and 
a device used in [70], Goncharov [46] also proved the existence part of 
Theorem 1.2S assuming that (Tl) holds for oc^l and that (T2) holds for 
all j8>0. Note that condition (T2) is implied by condition (S2). In this 
case one obtains the existence of a fixed point x0 of T such that r*^ 
ll*oll=-K*« Later, but independently, the existence of a fixed point x0 in 
C/* under conditions (Tl) and (T2) was proved by Hamilton [52] by 
using retraction and the Brouwer degree argument. Theorem 1.2S in­
cludes the corresponding result for compact maps in [70] and ball-
condensing maps. A similar result has been obtained by Nussbaum for 
set-condensing maps. 

2. Equations involving linear -̂proper mappings 

The first part of Chapter 2 contains some basic results concerning the 
relationship between the ^4-properness of a bounded linear mapping 
T:X-+Y and the unique approximation-solvability of the equation 

(2.i) n*w (f*n 
The theory of ^[-proper mappings is then used to deduce as special cases 
the earlier results of a number of authors concerning the convergence 
of various methods of Galerkin type used in the solvability of equation 
(2.1) involving bounded and unbounded mappings. The Fredholm 
alternative for equation (2.1) involving A -proper mappings is also dis­
cussed. The second part of Chapter 2 contains essentially new observations 
on the relation of the ^4-properness of Tto the stability of the approxima­
tion method 

(2.2) TJx) = QJ (x G Xn, Tn = QnT\Xn) 

in the sense of Mikhlin [88] and on the applications of the theory of A-
proper mappings to the Dirichlet boundary value problem for elliptic 
equations. 

2.1. Approximation-solvability and bounded A-proper mappings. In 
what follows we denote by L(X, Y) the space of bounded linear mappings 
from X to F. Unless stated otherwise, we assume that (X, Y) is a pair of 
Banach spaces provided with a projectionally complete scheme T= 
{Xn9 Pn; Yn9 Qn} and that Te L(X9 7). 
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Our first result is the following theorem established by the author in 
[113] which characterizes the class of bounded linear mappings and which 
initially motivated the study of A-proper mappings. 

THEOREM 2.1 A. Equation (2.1) is uniquely approximation-solvable for 
each f in Y if and only if T is A-proper and one-to-one. 

REMARK 2.1-1. The key observation to be made about the proof of 
Theorem 2.1 A is that it does not use the notion of the adjoint T* which is 
a highly linear concept. Consequently, as we shall see in Chapter 3, the 
same type of argument used in the theory of the approximation-solvability 
and/or solvability of equations involving linear ^4-proper mappings carries 
over to equations involving nonlinear >4-proper mappings. 

Theorem 2.1 A and Example 1.1a show that unless T is ^-proper the 
solutions x of equation (2.1) cannot be obtained as strong limits of solu­
tions xn e Xn of equation (2.2) for a given T even when we know that 
equation (2.1) is uniquely solvable for each ƒ in Y. 

THEOREM 2.1B. Tis A-proper and one-to-one if and only if the following 
two conditions hold: 

(2.1-1) There exist a constant c>0 and an integer «0=1 such that 
\\Tn(x)\\^c\\x\\forallxeXnandalln^n0. 

(2.1-2) If{xnj\xni e Xnj} is any bounded sequence such that Tni(xnj)-^g 
for some g in Y, then there exists x e X such that T(x)=g. 

It is not hard to show (see [113]) that as a consequence of Theorem 2.IB 
one obtains the following result which provides some practical means to 
verify that a given mapping T e L(X, Y) is ^4-proper. 

THEOREM 2.1C. Suppose that any one of the following three conditions 
hold: 

(2.1-3) R(T)=Y. 
(2.1-4) QnQm=Qnf°r m^n and X is reflexive. 
(2.1-5) Q%u-*u in Y* for each u in Y*. 
Then T is A-proper and one-to-one if and only if condition (2.1-1) holds. 

We add in passing that (2.1-5) holds if T=T8 and Y has a shrinking 
Schauder basis (see Marti [83]), and in particular if Y has a Schauder 
basis and is reflexive. 

It will be seen below that Theorems 2.1A, 2.1B, and 2.1C include the 
convergence results of Kantorovich [63], Mikhlin [86], [87], Polsky 
[131], [132], Sobolevsky [143], Medvedev [85], Martyniuk [84], the writer 
[102], [103], [104], and other authors for the methods of Galerkin type 
involving both bounded and unbounded operators. We will illustrate 
this assertion with the following discussion for the case of bounded maps. 
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Galerkin method. Let C e L(X, X) be compact. The Galerkin method for 
the solvability of the equation 

(2.1-6) x-Cx=f (feX) 

consists of solving the finite dimensional equations 

(2.1-7) xn-PnCxn = Pnf 

in order to determine the approximate solution xn e Xn. In this general 
setting the convergence of the method was first obtained by Kantorovich 
[63] and Mikhlin [87]. Since T=I—C is 4̂-proper with respect to T0= 
{Xn, Pn; Xn9 Pn}9 their result follows as the following corollary of Theorem 
2.1A for the case when Y=X9 Yn=Xn9 and Qn=Pn. 

COROLLARY 2.1D. If T=I—C is one-to-one, then equation (2.1-6) 
is uniquely approximation-solvable for each f e X. 

Another corollary of Theorem 2.1 A which includes the results estab­
lished in [55], [85], [103], [131] for the case when A îs a Hilbert space is 
the following. 

COROLLARY 2.IE. Let Xbe a reflexive Tl^space with X* strictly convex 
and let J be the normalized duality map ofX into X*. Suppose T e L(X, X) 
is such that any one of the following three conditions hold: 

(2.1-8) (Tx, Jx)^c\\x\\2for allxeX and some c>0. 
(2.1-9) T is one-to-one and lim infw_00(7

Txn, /jcn)^d>0 whenever xn-^0 
with \\xn\\ = 1 for all n. 

(2.1-10) T=A + C9 T is one-to-one, C is compact and A satisfies either 
(2.1-8) or (2.1-9). 

Then equation (2.1) is uniquely approximation-solvable with respect to 
T0for each f e X. 

Petrov-Galerkin method. Let {Xn} and {Yn} be two distinct sequences 
in Zso that T1={Xn9 Pn; Yn9 Qn} is projectionally complete for (X, X). The 
generalization of the Galerkin method suggested in [99] consists in con­
structing a solution x of equation (2.1-6) as a limit of solutions xn e Xn 

of the equations 

(2.1-11) Qnxn - QnCxn = Qnf (xn G Xn9 Qnfe Yn) 

which are different from equation (2.1-7) since Qnxn^xn. In this abstract 
setting and under the assumption that equation (2.1-6) is uniquely solvable 
for each ƒ in X, Polsky [132] established the unique approximation-
solvability of equation (2.1-6) with respect to I\ for each ƒ in Sunder the 
following. 
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CONDITION (A). There exist c0>0 and «0^1 such that \\y\\^c0\\Qnyl 
for ally in Xn and all n^nQ. 

It was observed by Polsky that Condition (A) is also a necessary 
condition for equation (2.1-6) to be uniquely approximation-solvable with 
respect to I \ for each ƒ in A" in the sense that if Condition (A) does not 
hold then one can give examples of C and ƒ for which equation (2.1-11) 
is either not solvable or has infinitely many solutions or the approximate 
solutions xn do not converge. In [149] Vainikko has shown directly even 
for a more general setting that Condition (A) is both necessary and suf­
ficient for the convergence of the Petrov-Galerkin method. 

It turns out that the basic result of Polsky can be easily imbedded into 
the general theory of ^4-proper mappings. It follows from Theorem 2.1 A 
and the following lemma deduced from Theorem 2.1C. 

LEMMA 2.IF. Suppose CeL{X9X) is compact. Then T=I—C is 
A~proper with respect to Tx if and only if Condition (A) holds. 

PROOF. Suppose Tis ^-proper with respect to IV Then, by Proposition 
1.1D, the identity I=T+C is ^-proper with respect to IY If there were a 
sequence {xnj\xnj e Xnj} such that ||x„J = l and Qnixnj-+09 then ƒ would 
not be ^4-proper with respect to I \ . Hence there exist c>0 and «0=1 s u c h 
that ||ôn*ll=cIMI f°r xeXn and n^.n09 that is, Condition (A) holds. 
Suppose now that Condition (A) holds. Since I is onto, Theorem 2.1C 
shows that I is ^t-proper with respect to I \ . Hence, by Proposition 1.1D, 
T=I—C is ^4-proper with respect to I \ . Q.E.D. 

An analogous characterization of the unique approximation-solvability 
of Polsky obtained in [131] for equation (2.1) with T e L(H, H) is deduced 
even for T eL(X9 X) from Theorem 2.1 A and the following consequence 
of Theorem 2.1C. 

LEMMA 2.1G. Suppose TEL(X9 X) is bijective and Tw=inf{||jPttz|| | z G 

T(Xn), ||z|| = l }>0 . Then Tis A-proper with respect to V0={Xn9 Pn; Xn9 Pn} 
if and only if Condition (A), lim infn Tn=T>0, holds. 

The following special case of Theorem 5 in the author's paper [119] will 
prove to be useful in §2.2. 

LEMMA 2.1H. Let H and H0 be Hilbert spaces with H0<^H such that 
H0 is dense in H and the injection of H0 into H is continuous. Let T9 Ke 
L(H09H) and let V0={Xn9Pn; Yn9 Qn} be projectionally complete for 
(H09 H) and such that QnKx=Kxfor each x e Xn and each n. If there exists 
a compact map C e L(H09 H0)9 constants a>0 and 6^0, and an integer 
«0^1 such that for each n^nQ 

(Tx, Kx) ^ a |x|o - (Cx, x)0 for all x G Xn9 

then T:H0-+H is A-proper with respect to T0. 



244 W. V. PETRYSHYN [March 

2.2. Equations involving unbounded linear operators. In this section we 
show how the theory of ^4-proper mappings outlined in §2.1 can be used 
to study the approximation-solvability of equations involving various class­
es of unbounded linear operators. The relation of results presented here 
to those of other authors will be indicated. The basic virtue of the theory 
of ̂ 4-proper mappings as used here lies not only in the fact that it presents a 
general and a unified approach to problems treated differently by a number 
of other authors but, as will be seen later, it presents a somewhat new 
approach to the approximation-solvability of equations involving abstract 
and differential equations. 

Equations with K-p.d. operators. Let H be a real Hubert space and let 
A and K be linear operators such that D(A) is dense in H and K is close-
able with D(K)^D(A) and KD(A) dense in H. The map A:D(A)-+H 
is called K-positive definite (K-p.d.) if there are constants ax>0 and a2>0 
such that 

(2.2-1) (^x ,Kx)^ a i | | x | | 2 and \\Kx\\2 ^ a2(Ax, Kx) for x e D(A); 

A is called K-symmetric if (Ax, Ky)=(Kx, Ay) for x,y e D(A). Note that 
the class of AT-p.d. and ^-symmetric operators contains among others: 
(a) positive definite and symmetric operators (when K=I); (b) closeable 
invertible operators (when K=T); (c) certain ordinary and partial dif­
ferential operators of odd and even order (see [82], [84], [141]); (d) 
bounded symmetrizable operators (see [102]), and others. 

Suppose that A is both AT-p.d. and AT-symmetric and let H0 denote the 
completion of D(A) in the metric 

(2.2-2) [x, y] = (Ax, Ky), \x\ = [x, * F 2 (x, y e D(A)). 

Then it is known [102], [104] that H0 can be regarded as a subset of H, 
the mapping x-^Kx of D(A) into H is bounded from the #0-norm to H 
and so can be extended uniquely to a bounded linear map K0 of H0 into 
H and D(K0)=H0^D(R) where R is the closure of K in H; moreover, 
A has a unique closed AT0-p.d. and ^o-symmetric extension A0 with D(A0) 
in H0 such that A0:D(A0)-+His bijective. We refer to A0 as the Friedrichs 
extension of A and note that for # = ƒ the map A0 furnishes the self adjoint 
extension constructed by Friedrichs (see [43], [86]). 

It was shown in [104] that one can use A0 to construct the solvable ex­
tension for a given K-p.d. but not necessarily ^-symmetric operator L 
and then use this fact in the approximation-solvability of the equation 

(2.2-3) Lx=f. 

Thus the following extension of the results of Friedrichs and Lax and 
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Milgram [76] is useful (see the author's paper [104] for further results 
and proofs). 

THEOREM 2.2A. Let A be K-p.d. and K-symmetric and let L be a linear 
operator with D(L)=D(A) such that for some rj^O and rj2>0 

(2.2-4) (Lx, Kx) ^ Y\X |JC|2 for x e D(L), 

(2.2-5) \(Lx, Ky)\ ^ rj2 \x\ \y\ for x,ye D(L). 

Then L has a unique closed extension L0 of the form L0=A0W0 with 
D(L0)c:H0 such that L0:D(L0)-+H is bijective, L0 satisfies (2.2-4) for 
x e D(L0) and (2.2-5) for x e D(L0) and y G H0 with K0 replacing K, and 
W0 is the extension of the bounded map W=A^1L: D(L)-+H0 such that 
Wa WQ^WandR(W0)=D(A0). 

Note that the closure W: H0-+H0 exists and is such that 

(2.2-6) [ Wx, x] ^ r\x |x|2 for x G H0. 

We add that the interesting feature of the proof of Theorem 2.2A is that 
it depends only on the linear operator A0 and the bijectivity of W (and 
not on the linearity of L). Consequently, as has been shown in [105], 
Theorem 2.2A remains valid for densely defined nonlinear operators 
satisfying generalized monotonicity conditions. 

As a corollary of Theorem 2.2A and Theorem 2 in [104] we obtain 
the following result which will be useful in the solvability of boundary 
value problems. 

COROLLARY 2.2B. Let A be K-p.d. and K-symmetric and suppose that 
K is closed and that D(K)=D(A). If L is a closeable operator for which 
(2.2-4) holds for all x in D(L)=D(A), then L0=L and H0=D(L). 

REMARK 2.2-1. The extension results mentioned above are valid for 
Hubert spaces which need not be separable or real. In case H is complex, 
(2.2-4) is replaced by | (Lx, Kx)\ ̂  rj \x\2 for XE D(L) and the ̂ -symmetry of 
A follows from the fact that A is K-p.d. 

The above results are useful in the study of the approximation-solva­
bility of equations involving operators acting in separable Hubert spaces. 

Let A\D(A)<^H->H be ^T-p.d. and AT-symmetric. Let HQ be the space 
constructed above. Our problem is to study the approximation-solvability 
of the equation 

(2.2-7) Lx + Mx=f (fGH), 

where L satisfies the conditions of Theorem 2.2A and M is such that 
D(M)^D(L) and Aö1M:D(A)<^H0->H0 is bounded. It is easy to show 
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that if {</>i) <= H0 is linearly independent and complete in H0, then {K<f>t} is 
linearly independent and complete in H. If Xn=[<f>l9 • • •, <£J, Yn= 
[K<f>l9 • • •, K(f>n], Pn:H0-+Xn and Qn:H-+Yn are orthogonal projections 
in H0 and H respectively, then T°={Xn,Pn; Yn,Qn} is projectionally 
complete for (H0, H). 

The generalized moments method. Assuming that {^}c D(L), the 
GM method consists in finding *n=2r=i<z?<^ eXn from the condition 
that Lxn+Mnx—ƒ be orthogonal to {Kfa}, l^i^n, that is, from 

(2.2-8) 2 {(L&, X ^ ) + (M&, K ^ , ) K = (ƒ, K&), 1 ^ j ^ n. 
i=l 

The system (2.2-8) can be written in the form 

(2.2-9) QnLxn + QnMxn = Qnf. 

It follows easily that (2.2-9) can be written in the form 

(2.2-10) PnWxn + PnA?Mxn = PnA?f 

or in the form 

(2.2-11) PnWxn + PnCxn = PnAöV9 

where W and C are the closures in H0 of W and A^M respectively. 
Thus the GM method reduces to the method of Galerkin for the equation 

(2.2-12) Wx + Cx = Atf (x e H0, A^fe H0). 

It is clear that every solution of (2.2-7) is a solution of (2.2-12) but the 
converse is not true in general. However, if D(M)^H0 then, by the fact 
that L0=A0W0 with R(JV^)=D{A^), it can be shown that in this case 
x0 e D(L0). In what follows we regard a solution x0 e H0 of (2.2-12) as a 
generalized solution of equation (2.2-7). If we assume that {<£J lie in H0 

but not in D(L), then equation (2.2-12) must be used for the construction 
of a solution (ordinary or generalized) of equation (2.2-7). 

If we assume that C is compact, then in view of (2.2-6), the map W+ 
C:H0-+H0 is v4-proper with respect to T0={Xn,Pn; Xn9Pn} and thus 
Theorem 2.1 A implies the following basic result for the GM method which, 
as will be seen, contains most of the earlier results for the projective type 
methods. 

THEOREM 2.2C. If C is compact and W+C is one-to-one then there 
exists an integer «0=1 such that equation (2.2-8) or (2.2-9) has a unique 
solution xn e Xn. Moreover, xn->xn in H0 and x0 is the unique solution 
(possibly generalized) of equation (2.2-7). 
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In view of Lemma 2.1H, Theorem 2.2C follows as a corollary of the 
following new result which is more useful in applications at least in those 
cases when the Sobolev type theorems are applicable. 

THEOREM 2.2D. Suppose that all the conditions of Theorem 2.2C are 
satisfied except for the inequality (2.2-4) which is replaced by 

Condition (a) : There exists a compact map C0 :D(L)cz H0->H0 such that 
(Lx, Kx)çîr}z\x\2—rjA[C0x, x]for all x in D(L) and some rjz>0 and 

Then the conclusions of Theorem 2.2C hold. 

Let us remark that if in Theorem 2.2C the map M=0, then by virtue 
of Theorem 2.2A the generalized solution x0 constructed by Theorem 2.2C 
does lie in D(L0). However, if M 5*0, then in general the generalized 
solution x0 G H0 of (2.2-7) constructed by Theorem 2.2C need not lie in 
Z>(L0). Moreover, unless L is of a very special type and {<£J are chosen in a 
special way (see [32], [86]) the residual error \\Lxn+Mxn—f || will not 
converge to 0. The next new theorem shows how both of these deficiencies 
can be eliminated if we strengthen the conditions on L and K. It also has the 
interesting feature that the theory of ^-proper mappings is applicable 
directly to equation (2.2-7) without using the auxiliary equation (2.2-11). 

THEOREM 2.2E. Suppose A is K-p.d. and K-symmetric with K closed 
and D(K)=D(A). Suppose L is a closeable operator with D(L)—D(A)for 
which either the inequality (2.2-4) or Condition (a) holds. Suppose further 
that M is H0-compact (i.e., M is compact as a map from H0 to H). Then 
L+M:D(L)^H0->H is A-proper with respect to T° and if L+M is also 
one-to-one, then equation (2.2-7) is uniquely approximation-solvable with 
respect to T°for each f e H. Moreover, x0 e D(L) and \\Lxn+Mxn—f ||->0 
as n->oo, where xn is a solution of equation (2.2-8). 

PROOF. We indicate the proof for the more general case when L 
satisfies Condition (a). It follows from Theorem 2 in [104] that K0=K, 
A0=A, and H0=D(A) with |x|, \\Tx\\ and ||AJC|| providing equivalent 
norms on D(A). This and the closed graph theorem imply that L:H0-+H 
is bounded. In view of Condition (a), Lemma 2.1 H implies that L:H0-+H 
is ^4-proper with respect to T0 and so is L+M since M : HQ-+H is compact. 
Now, the first conclusion of Theorem 2.2E follows from Theorem 2.1 A. 
The last assertion follows from the fact that H0=D(L) and L, M:H0-+H 
are bounded. Q.E.D. 

Special cases. The following are the most important special cases of the 
GM method formulated and studied earlier by a variety of principles and 
methods. 

(i) Galerkin method. When K=I and L=A, then AQ is selfadjoint 
and positive definite, H0 is the energy space HA, JP=/and the GM method 
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reduces to the well-known Galerkin method. In this abstract form Theorem 
2.2C was first proved by Mikhlin [86], although beginning with Galerkin 
the method has been extensively used earlier in the study of the solvability 
of differential equations (see [72], [73], [86] for numerous references). 
For more recent study of the method see [26], [132], [149], [152]. 

(ii) The method of moments. When L=A and K=A, then H0 is the space 
with the scalar product [u, v] = (Au, Au) and the GM method reduces to 
the method of moments whose study was initiated by Krilov and Kravchuk 
(see [73]) and further studied by a number of authors (e.g. [74], [84], 
[102]). In its present form Theorem 2.2C was proved by the author [102]. 
If L=A and K^A9 then L0 is K-p.d. and AT-symmetric and the method 
has been studied by Martyniuk [84] (see also [75]) for special classes and 
by the author [102] in its present setting. If L^A and Kj£A, the GM 
method was proved in [109]. The GM method is related to the Galerkin-
Petrov method initiated by Petrov [99] and extensively studied by Polsky 
[131], [132], Vainikko [150] and others (see [72], [109] for further 
literature). 

(iii) The generalized Ritz method. If M=0, K—I and L=A, then A0 is 
selfadjoint, HQ=HA and the GM method reduces to the method of Ritz 
studied by a number of authors and, in particular, by Mikhlin [86], 
[88]. For the extensive literature on this method, see [86]. If Kj±I, the 
generalized method of Ritz has been studied in [84], [102] and others. 
When Kj±I and Lj*A the method has been studied in [104]. When 
K=A and K is closed with D(K)=D(L), then as was shown in [104], L 
forms an acute angle with K in the sense of Sobolevsky [143] and under 
the present conditions Theorem 2.2C was proved in [104] while under 
somewhat different conditions it was proved earlier by Sobolevsky [143]. 

(iv) The method of least squares. When M=0 and L=A=K, the 
GM method reduces to the method of least squares which has been studied 
by a number of authors (see [72], [86], [152] for references). 

Advantages of the GM method. It is obvious that the first positive fea­
ture of the GM method is that it presents a unified approach to a number 
of special methods and that it is applicable to a more general class of 
equations than any of its special cases. Another of its advantages is that 
the wide freedom in the choice of A and K makes the GM method 
computationally more flexible and useful. When applied to differential 
equations it will give a better character of convergence than the method 
of Galerkin. For applications to partial differential equations see §2.4. 

Applications to ordinary differential equations {ODE). We indicate here 
the type of problems to which the above results apply. Our simple example 
of a general third order linear ODE will also illustrate some of the points 
mentioned above. 
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We discuss the approximation-solvability of the problem 

(2.2-13) -(p3(x)u")' + 2 Pi(x)uH) = fix), u(0) = u'(0) = «'(1) = 0, 
t = 0 

where ƒ G L2=L2(0, 1),/?, e C°(0, \),p3 e C^O, 1) with/?3(;t)^m0>0, and 
0(0 , 1) denotes the set of all real-valued v s L2 which are j times con­
tinuously differentiable on [0,1]. Let C%={u G C3(0, l)|w(0)=t/(0)= 
t/'(l)=0}. 

To study equation (2.2-13) we take for A the simple operator Au= —u'" 
with D(A)=CQ which is dense in L2. If we take Ku=u' with D(K)= 
{u e 0 (0 , l)|w(0)=0}, then it is easy to show that the operator A is 
AT-p.d. and AT-symmetric. In this case H0 is the completion of D(A) in 
the metric 

(2.2-14) [u, v] = (Au, Kv) = | « V dx, \u\ = y/[u,u]. 
Jo 

The map A has a unique X-p.d. and X-symmetric extension A0 with 
D(A0)^H0 such that A0:D(A0)-+H is bijective. It should be added that 
# 2

2 c # 0 c jpj, where JF? is the Sobolev space of all we L2 such that w 
and its derivatives up to order m—1 are absolutely continuous on [0,1] 
and u<m)eL2 and where W?={ue J^|w(0)=w(l)=- • •=t/<w~1>(0)= 
ll<m-i)(i)s=0}. ^ e denote the inner product and the norm in W™ by 
(•, Omand ||-|L. 

Problem 1. Suppose L is defined by the left-hand side of (2.2-13) with 
D(L)=D(A). Assume additionally that p{(x) satisfy further conditions 
such that L is Â-p.d. but not necessarily ^-symmetric. If {<£J <= D(L) is 
linearly independent and complete in H0, then by Theorem 2.2C (with 
Af=0) the GM method is applicable to equation (2.2-13) and the gener­
alized solution x0 e H0 obtained by this method actually lies in D(L0), 
where L0 is the solvable K-p.d. extension of L given by Theorem 2.2A. 

Problem 2. If we do not assume any additional conditions on pt(x)9 

then we set 
2 

Lu = -(p3(x)u"y for u G D(L) = D(A) and Mu = £ piU
U) 

and apply Theorem 2.2C to Lu+Mu=f. Integration by parts shows that 
(Lu, Ku)^.m0\u\2 for ueD(A), i.e., L is K-p.d. It is easy to see that 
m(u, v)=(Mu, Kv) is a bounded bilinear form on H0 and that \m(u, u)\^ 
ylMUMIi- Hence, by the Sobolev imbedding theorem, the form m(u, v) 
is completely continuous and therefore there exists a compact operator 
C0 on W\ such that (C0w, v)2=m(u, v), for all t/ and v in fl^- Hence 
^o"1^ is compact on i/0 since Aô1M=C0 on i/o. We can also prove the 
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compactness of AQXMby using the Green's function for A0 as it was done 
in [84]. Consequently, by Theorem 2.2C, the GM method when applied 
to equation (2.2-13) converges in the space H0. The generalized solution 
u0 G H0 need not lie in D(L) and, in general, the residual error does not 
converge to 0. 

Problem 3. In this case we let L and M be as in Problem 2 but choose 
K=A0 so that the metric on D(A0) is given by |i/| = ||^0t/|| = ||t#'"|| where 
the derivatives are taken in generalized sense and with this metric D(A0) 
is denoted by H0. It is not hard to show that W\ <=• H0 <= W\. Now the opera­
tor L:H0->L2 is bounded but, unless further conditions are imposed on 
pz(x), L need not be K-p.d. for this choice of K. However, since, for 
ueD(L)=D(A0), 

(Lu, Ku) = [\z(u'"f + [ W ' V f f dx ^ m0 M
2 + b(u, u), 

Jo Jo 

where b(u, v) is the bilinear form on W\ given by b(u, v)=$lp'zu"v"f dx, 
the same arguments as those used in Problem 2 show that there exists a 
compact operator C0 on H0 such that b(u, t?)=[C0w, v] for u,veH0. 
Consequently, L satisfies condition (a) of Theorem 2.2D. Similar argu­
ments show that M is //o-compact. Hence, by Theorem 2.2E, L+M:H0-+ 
L2 is an ^t-proper mapping with respect to T0 determined by {</>J c H0 

and {K</>t} <= L2. Consequently, if L+M is one-to-one, then Theorem 2.2E 
implies the unique approximation-solvability of equations (2.2-13) with 
respect to T0. Moreover, the solution u0 obtained by the GM method 
(2.2-9) as the limit of solutions un e Xn of equations (2.2-9) lies in D(L) 
and \\Lun+Mun—f ||->0 as n-^co. 

2.3. GeneralizedFredholm alternative. Recall (see [64]) that T e L(X, Y) 
is said to be Fredholm if its range R(T) is closed, and if the dimension 
OL(T) of its null space N(T) <= X and the codimension (l(T) of its range are 
finite. If T is Fredholm, then its index is given by i(T)=<x.(T)—p(T). In 
what follows we let N(T)±={ueX*\(u, x)=0 for xeN(T)} and 
N(T*)±={y e Y\(w, j>)=0 for w e N(T*)}. 

If C e L(X, X) is compact, then the classical Fredholm alternative 
asserts that: "Either equation (2.1-6) is uniquely solvable for each y e Y 
or N(I-C)j*{0} and then a(/-T)=£(ƒ-<:)=dim AT((/-C)*)<oo and 
equation (2.1-6) is solvable if and only if f e N((I— C)*)-1-." As is well 
known, the above fact plays an essential role in the solvability of linear 
integral and differential equations. 

Assuming that the pair (X, Y) of Banach spaces has a projectionally 
complete scheme T={Xn, Pn; Yn, Qn}, the writer obtained in [113], [124] 
a generalization of the above alternative to ^-proper mappings which we 
state in the following form. 
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THEOREM 2.3A. Suppose T e L(X, Y) is A-proper. Then either equation 
(2.1) {i.e., Tx=y) is uniquely approximation-solvable for each y in Y or 
N(T)^{0} and in the latter case T is Fredholm with i(T)^0. 

It should be noted that the proof of Theorem 2.3A given in [124] is 
based on Theorem 2.1 A and does not utilize the adjoint T* of T. If one 
assumes additionally that the adjoint scheme Y*={Y'n9 Q*l XLP%} is 
projectionally complete for the pair (F*,X*) where Y'n=R(Q%)9 and 
X'n=R(P%) (which would be the case if Zand Y had shrinking Schauder 
bases), then it makes sense to talk about the ^4-properness of T* : Y*-+X* 
with respect to Y*. However, the following example from [116] shows that 
the adjoint T* of an ^4-proper mapping T need not be ̂ 4-proper with re­
spect to T*. 

EXAMPLE 2.3-1. Suppose Y=X=l29 {&} is an orthonormal basis in 
/2> Xn= [</>l9 • • • , <f>n] for each n and Pn is an orthogonal projection of 
/2 onto Xn. If Te L(l2, l2) is given by 

r ^ = o, T<f>2 = o, r ^3 = < 2̂, • • • , r ^ , = ^_1 for* ^ 3 , 
then T is ^-proper with respect to Y0={Xn9 Pn; Xn, Pn} but T*:l2-+l2 is 
not ^-proper with respect to Y$=Y0. Note that N(T)= [<f>l9 <f>2]9 N(T*)= 
[<£J and so f(r)=ocT—0T=1. 

The following result established by the writer in [113], [124] by using 
Theorems 2.1A and 2.1C supplements Theorem 2.3A and provides a 
complete generalization (partially in constructive form) of the classical 
Fredholm alternative. 

THEOREM 2.3B. Let TeL(X9 Y) and suppose that Y and Y* are pro­
jectionally complete for (X9 Y) and (Y*9 X*) respectively. Then: 

(a) T is one-to-one and A-proper with respect to Y if and only if T* is 
one-to-one and A-proper with respect to Y*. 

(b) Suppose Tis A-proper. Then either equation (2.1) is uniquely approxi­
mation-solvable for each y in Y, in which case the adjoint equation 

(2.3-1) r*(w) = w (ueY*9we X*) 

is also uniquely approximation-solvable with respect to Y* for each w in X*9 

or JV(7V{0} and then i(T)^0. Moreover, i(T)=0 if and only if T* is 
A-proper with respect to Y*. 

REMARK 2.3-1. (i) For the case when X and Y are reflexive spaces 
Theorem 2.3B was proved by the author in [113]. In their present form 
Theorems 2.3A and 2.3B were obtained in [124] although they had been 
proved earlier in the writer's course on numerical functional analysis at 
Rutgers in 1969/70. 
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(ii) If Y=X, r = r 0 = { Z w , P w ; Xn,Pn} and 7 W - C with C compact, 
then T is ^4-proper and T* is also ^4-proper with respect to r * = 
{Xn,P*l X„,Pn} since C* is compact. Hence the classical Fredholm 
alternative (see [64]) follows as a special case from part (b) of Theorem 
2.3B for the class of spaces considered in this paper. 

(iii) If Y=X9 T = r 0 with ||/>J| = 1 and T=I-S-C with \\S\\<19 

then Tis ^4-proper and so is r * = / * ~ 5 * — C* with respect to T* since 
||5*||< 1 and C* is compact. Hence part (b) of Theorem 2.3B is valid 
for T=I-S-C with i(T)=0. 

(iv) Suppose Y=X9 X is reflexive, X and X* are strictly convex, and 
r = r 0 with IIPJI = 1. If T=L+C e L(X, X) with C compact and (Tx, Jx) 
^c||x||2 for all x e X and some c>09 where J is the normalized duality 
map of X into X*, then T is ^-proper with respect to V0 and T*=L* + 
C*:X*-+X* is also A -proper with respect to T*. Hence part (b) of Theo­
rem 2.3B is valid for T=L+C with i(T)=0. If X=H,H SL separable 
Hubert space, the above alternative was proven by Hildebrandt and 
Wienholtz [55]. 

(v) The Fredholm alternative for ^4-proper mappings defined in terms 
of more general schemes (the so-called discrete convergence of Stummel 
[145]) has been recently obtained by Grigorieff [51]. The results in [51] 
also extend the alternative of the writer obtained in [124]. 

It was mentioned before that if T is ^-proper and C is compact, then 
T+C is also yi-proper. In applications it is of interest to know (just as in 
the Fredholm theory) if the map remains v4-proper when perturbed by 
another map with a small norm. A partial answer is given by the following 
theorem (see [124]). 

THEOREM 2.3C. If TeL(X9 Y) is A-proper with / (r )=0 , then there 
exists a constant y>0 such that for each B e L(X, Y) with \\B\\<y the 
map T+B is also A-proper. 

It is not known to the writer if Theorem 2.3C remains valid when 
i(T)>0. 

2.4. Dirichlet boundary value problem for elliptic equations. In this 
section we show how the notion of an A -proper mapping enters naturally 
into the problem of the solvability of boundary value problems (BVP) 
for elliptic partial differential equations. We illustrate this with the dis­
cussion of the approximation-solvability of the Dirichlet BVP studied 
by Vishik, Browder and Gârding (see [1]). 

Let Q be a bounded domain in Rn with smooth boundary so that the 
Sobolev imbedding theorem holds on Q. For fixed p e (1, oo) let Lp= 
LV(Q) denote the real Banach space of functions u{x) on Q with norm 
|| w|| p. If a=(a! , • • • , an) is a multi-index of nonnegative integers we 
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denote by Da=d*1ldxï1 • • • dan/dxnn a differential operator of order 
la^oCiH han. If m is a nonnegative integer, W™= W%{Q) denotes the 
real Sobolev space of all u G Lp whose generalized derivatives D*u, |a|^w, 
also lie in Lp. W™ is a separable uniformly convex Banach space with 
respect to the norm NL.p={2|a|£» IID'wQ*-1. In case/?=2, we get the 
Hilbert space W% with the corresponding inner product (•, ')m. Let 
CcT(ô) be the family of m times continuously differentiate functions with 
compact support in Q considered as a subset of W™ and let W™ be the 
completion in W™ of CJ*(0. Finally, let (w, i?)=JQ uv dx denote the 
natural pairing between u in Lv and v in LQ with #=ƒ?(ƒ?—I)-1. 

We first consider the Dirichlet BVP of the form 

(2.4-1) ^ ( U ) = JS?(U) + ^ ( U ) = / ( X ) , D°U\9Q = 0 f o r M ^ m - 1 , 

where ƒ e L2 and «£?(*/) and J((u) are formal operators given by 

(2.4-2) X{u) = 2 ( - l ) , a , ^ a ( ^ W ^ ) , 
| « | . | J | £ m 

(2.4-3) uf(ii) = 2 (-DwDHp,J?c)D*u) 
\fi\£m-l,\y\£m 

with aa/ï GL°°(Ö) for |a|^m and |j8|^m and aa/? G C(Ö) for |a| = |j8|=w, 
and bP7eL°°{Q) for |j8|^m-l and |y| <*/?!. 

The generalized Dirichlet BVP for (2.4-1) consists in finding a function 
u e W?9 called the weak solution of (2.4-1), such that 

(2.4-4) J(w, t;) + m(w, i>) = (ƒ, v) for all t? G Wf, 

where /(t/, t?) and m(u, v) are the Dirichlet forms on W™ associated with 
the formal differentiable operators JSf (w) and c (̂w) by 

(2.4-5) l(u,v)= 2 M*)0*"* D*v>> 
U\.\P\^m 

(2.4-6) m(u, i;) = 2 (bfiY(x)Dyu, D^v). 
\P\<m-l,\y\£m 

Our conditions on a^ and i j y imply that l(u, v) and /w(w, v) are bounded 
bilinear forms on W™ and hence can be written in the form 

(2.4-7) l(u, v) = (Lu, v)m, m(u,v) = (Mu9v)m for all w, v e W%9 

where L, M: Wm-^W% are bounded linear operators. If wf e W™ is such 
that <ƒ, t;)=(w/5 v)m for all t; in W?9 then the equation 

(2.4-8) Lu + Mu = wr (M G #J\ W, G W?) 

is equivalent to the conditions (2.4-4) for the weak solution of (2.4-1). 
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Suppose that J£?(t/) is strongly elliptic, i.e., 

(2.4-9) 2 owOO^V ^ d M 2 w for a11 V E Rn and some d > °-

Then, by Gàrding inequality, there exist ax>0 and fl0=0 such that 

(2.4-10) (Lu, i*)m ^ fll M i . , - a0 \\uf0t2 for all u e ft?. 

Since the imbedding of W™ into L2 is compact, it follows easily from 
(2.4-10) that L is ^4-proper with respect to any given projectionally com­
plete scheme r0=*{Xn9Pn;Xn,Pn} for (W2, #T). The latter exist since 
Wt is a separable Hilbert space. Since, as is not hard to show, 

\m(u, u)\ ^ d0 HiilL.a IMU-1.2 for all u in # 7 and some d0 > 0, 

it follows that M is compact. Hence T=L+M:W?-+W? is ^-proper 
with respect to T0 and consequently Theorem 2.1 A implies the validity 
of the following result. 

THEOREM 2.4A. If T=L+M: W™^>W2 is one-to-one, then the genera­
lized Dirichlet BVP for (2.4-1) is uniquely approximation-solvable with 
respect to V0for each f in L2. (In particular, (2.4-1) has a unique weak solu­
tion u e Wl for each f e L2.) 

REMARK 2.4-1. It should be underlined here that unlike the standard 
approach to the solvability of the generalized Dirichlet BVP (see [1], [5]) 
which employs the Lax-Milgram lemma and the Fredholm theorems with 
the latter depending on the use of adjoints of linear mappings, our proof of 
Theorem 2.4A which yields the constructive solvability of the generalized 
Dirichlet BVP for (2.4-1) does not utilize the notion of the adjoint of T. 
Consequently, similar arguments go over to nonlinear problems. 

To discuss the case when i^T^^O} (i.e., the case when the generalized 
Dirichlet BVP (2.4-1) fo r /=0 has onontrivial weak solutions in W%) 
note first that T*=L*+M*:W?-+JV? is also ^-proper with respect to 
r o since M* is compact and L* satisfies the same inequality as L. Conse­
quently, Theorem 2.3B yields the following result. 

THEOREM 2.4B. IfN(T)^{0} and ifvl9 • •• ,vkis a basis for N(T*)cz 
W™, then k=<x(T) and the generalized Dirichlet BVP for (2.4-1) is solvable 
in W™ for a given f in L2 if and only if(f, vj)=0for l^j^k. 

Second order elliptic BVP in W\. If the PDE is of the second order, 
then using the results on ^4-proper and Â-p.d. mappings and the inequality 
of Sobolevsky [143] we obtain the unique approximation-solvability in 
W\ of the Dirichlet BVP for a general second order elliptic equation. 
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Suppose L is a strongly elliptic operator defined on D(L)=wi by 

(2.4-11) Lu = - J aió(x) - ^ - + 2 ajx) f*- + a0(*)" 

and assume that a{j(x) e C^Q), a^x) e C(Q), and that dQ is sufficiently 
smooth (see [103]). Our problem is to study the approximation-solvability 
of the equation 

(2.4-12) Lu=f (ueWlfeL2). 

To use the theory of £-p.d. mappings let Tand Kbe defined on D(T)=W\ 
by 

(2.4-13) Tu = -Aw, Ku = -Au + eu, c> 0. 

It is known that T is a selfadjoint positive definite map of W\ onto L2. 
It was shown in [103] that for all sufficiently large c>0 the map T is 
AT-p.d. and ^-symmetric and 

(2.4-14) mx(Tu, Ku) ^ ||w||2
2.2 ̂  m2(Tw, Ku) for u e W\ 

with W!>0, w2>0. Consequently, HQ=w\ where H0 has the scalar product 
[u, v] = (Tu, Kv). Let {^}c/f0 be linearly independent and complete in 
H0. Then {Kfa} is complete in L2 and if Pn : H0->Xn and ôn:L2-*Fn 

denote the orthogonal projections in H0 and L2 respectively with Xn= 
[<t>i, ••• ,#»] and r n = [#&, • • • , ^ J , then r°={JTn, Pn; Yn, Qn} is 
projectionally complete for (H0, L2). 

The projection method for equation (2.4-12) consists in finding xn e Xn 

from the finite dimensional operator equation 

(2.4-15) QnLxn = Qnf (xn e Xn, Qnfe Yn). 

It follows from (2.4-14) that T, K and L, considered as mappings from 
H0 to L2, are bounded. By the inequality of Sobolevsky [143] (see also 
[74]) there exist constants TJ>0 and r2>0 such that 

(Lu, Ku) ^ Tl f f ( r ^ p x - r2 Hull»., for u e H0. 

It is easy to see that this inequality can be put in the form 

(Lu, Ku) ^ yx \u\2 - r2[C0u, u] for u e H0, yx > 0, 

where C0 is the compact map determined by the bilinear form (u, v)x on 
H0 which is compact since the injection of W\-*W\ is compact. Hence, 
by Lemma 2.1H, L:H0-+L2 is 4̂-proper with respect to T°. 

The above discussion implies the validity of the following new construc­
tive theorem for the Dirichlet BVP for the second order strongly elliptic 
operator in W\. 
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THEOREM 2.4C. Let L be the strongly elliptic operator defined on W\ 
by (2.4-11) and let T° be the projectionally complete scheme for the pair 
(H09L2) determined by {</>.} czjvl and {K<f>t)<^L29 where Kis defined by 
(2.4-13) and satisfies (2.4-14). 

If L is one-to-one, then equation (2.4-12) is uniquely approximation-
solvable in H0~Wl with respect to T° for each f e L2. 

REMARK 2.4-2. (i) Theorem 2.4C strengthens the corresponding 
result of Ladyzenskaya [74] who established the approximation solvability 
of equation (2.4-12) under the assumption that equation (2.4-12) is 
uniquely solvable for each ƒ e L2 and that L satisfies the inequality 

—(Lu, u) ^ c \\u\\ltl for all ueW\ and some c > 0. 

(ii) Theorem 2.4C provides a new proof for the existence of solutions in 
W\ of equation (2.4-12). It does not use the classical Fredholm alternative 
which was used in all other studies known to the author concerning the 
solvability of (2.4-12) in W\. 

2.5. Stability of projective methods and A-properness. The study of the 
stability of projective methods was initiated by Mikhlin [88] who concen­
trated his attention on the Ritz method (see [88]) while the stability of the 
Galerkin and the Galerkin-Petrov methods was considered in [162] and 
later more completely in [150] and others (see [33], [88]). All results for 
A-ptoper maps presented here are new. 

In this section we indicate the relation of the notion of the ^4-properness 
of T with respect to T={Xn9 Pn; Yn9 Qn} to the notion of the stability of 
the method 

(2.5-1) Tn(xn) = Qnf (xn e Xn9 Tn = QnT\Xn9 n ^ *0) 

as defined by Mikhlin [88] with a slight variant due to [150] and [33] 
(see also [72]). 

For each fixed n fën0), along with equation (2.5-1) we consider the 
perturbed equation 

(2.5-2) (Tn + Fn)(yn) = Qnf + hn (yn e Xn, hn e Yn), 

where Fn:Xn-+Yn is a linear operator perturbation of Tn and hn is a per­
turbation of Qnf 

DEFINITION 2.5A. Suppose that equation (2.5-1) is uniquely solvable 
for each n^n0 and each f e Y. Then the projection method (2.5-1) is 
said to be stable from space X to Y if there exist nonnegative constants 
/?, q9 r independent of n and ƒ such that for ||JFJ|^r and arbitrary hn in 
Yn the perturbed equation (2.5-2) has a unique solution^ e Xn for n^n0 
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and the following inequality holds : 

(2.5-3) ||xn - y J < p llxJI ||FJ + q \\hj (n ̂  n0). 

THEOREM 2.5B. Suppose that TeL(X9 Y) is surjective. Then the pro­
jective method (2.5-1) is stable in the sense of Definition 2.5A if and only if 
T is one-to-one and A-proper with respect to I\ 

PROOF. Suppose Tisone-to-oneand^-proper.Then,byTheorem2.1A, 
equation (2.5-1) is uniquely solvable for each n^n0 and each ƒ G Y and 
so it makes sense to talk about the stability of (2.5-1) as given by Definition 
2.5A. Moreover, there exists c>0 such that ||rn(x)||5:c||jt|| for xeXn 

and n^n0. Let r be any fixed number in [0, c) and let \\Fn\\ ^r. Then for all 
x in Xn and n^n0 we have \\(Tn+Fn)xW^(c—r)\\x\\. Hence for each 
fixed n^n0 and any hn G Yn9 equation (2.5-2) has a unique solution 
yn G Xn. The above discussion implies the equality 

xn-yn= (Tn + Fn)-*(Fn{xn) - hn) 
from which (2.5-3) follows with/?=gr=(c—r)-1. 

To prove the converse, suppose that (2.5-1) is stable in the sense of 
Definition 2.5A. Take Fn=0 and for arbitrary ƒ G Y and hn e Yn let xn 

and yn be the solutions for n^n0 of the corresponding equations (2.5-1) 
and (2.5-2). Hence it follows from (2.5-3) that \\xn-yn\\<q\\hn\\ = 
\\Tn(xn—yn)\\ and consequently Hr^jc)!!^-1!!*!! for all xe Xn and each 
n^n0. In view of this and the surjectivity of T, it follows from Theorem 
2.IB that T is one-to-one and 4̂-proper. Q.E.D. 

Note that if X is reflexive and QnQm—Qn f°r w^w or Q%u-+u in Y* 
for each u in Y*, then the hypothesis in Theorem 2.5B that Tis surjective 
can be omitted. 

Theorem 2.5B forms a basis for the study of stability of the numerical 
realization of the approximation methods of the Galerkin type when the 
latter are applied to the solvability of equation (2.1) involving A -proper 
mappings. 

GALERKIN METHOD. We illustrate the above assertion by discussing the 
stability of the Galerkin method when the latter is applied to the equation 
(2.5-4) Tx = ƒ (feH9Te L(H9 H))9 

where H is a separable real Hubert space with a linearly independent and 
complete system {<£ J c: H and where T is one-to-one 4̂-proper with respect 
to ro={Ar

n,/>
w; Xn9 Pn} with Pn the orthogonal projection of H onto 

*n= [<£i, •" ,<l>n\ for each /i^l. 
If the approximate solution xn e Xn is taken in the form 

(2.5-5) * n = 2 a * ^ 
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then in the Galerkin method the unknowns a* are defined by the algebraic 
system 

(2.5-6) J (T<f>*> & K = (/' h) dûJÛ n) 

which can be written in the form 

(2.5-7) Gna
in} =f(n), 

where a<»>=K, • • •, alf ,ƒ<">=((ƒ, &), • • • , (ƒ , 4>n)f, G„=((^,-, <f>ù) 
for l ^ i , j^n. Let yt7 denote the errors arising in the computation of 
(T<f>i9 ^ ) , let rn=(y t 7) be the error matrix, and let ô{n) be the correspond­
ing error in / (w). Then instead of the exact Galerkin process (2.5-6) 
we solve the "nonexact" process 

(2.5-8) (Gn + rn)6<"> = ƒ<*> + 0<W>, 

and obtain the "nonexact" solution 

(2.5-9) yn = 2 bfb. 

Following Mikhlin [88] (with a variant due to Vainikko [150]) we say 
that the Galerkin method is stable if there exist nonnegative constants 
r, p9 q independent of n and of/such that for | | r n | |^r and arbitrary 
<5(n) 6 Rn the perturbed equation (2.5-8) has a unique solution 6(n) e Rn 

for n^n0 and 

(2.5-10) \\ain) - b^H ^ p llxol | | r j + <z ||(5(w)|| 

where JJC0 is the unique solution of equation (2.5-4) which exists by 
Theorem 2.1 A. By the norms of the vectors and matrices we mean their 
norms as elements and operators in the space Rn. 

Now, as was mentioned before, equation (2.5-6) may be written in 
*«as 

(2.5-11) PnTxn = Pnf (xn e Xn9 Pnfe Xn). 

To use Theorem 2.5B we have to write equation (2.5-8) as an operator 
equation in Xn. For this purpose we use the approach of [72]. Let Sn:H-+ 
Rn be the linear map defined by Sn(x)=((x9 fa), • • • , (x9 </>n))

T for each 
x in H and let Sn be the restriction of Sn to Xn. It follows that ||£J|=s 
\\Sn\\9 S^1 exists and Sn1Sn=Pn. Moreover, if t/n=2r=i £?& is any element 
in Xn9 then Sn(un)=Rnc

{n)
9 where Rn is the Gramm matrix given by 

K=((&,&)) f o r l^-ij^n and each w^l. Since c{n)=R^Sn(un)9 the 
above discussion implies that equation (2.5-8) can be written in Xn as 

(2.5-12) PnTyn + Fnyn = Pnf + hn9 

where A n = ^ ^ ( n ) e Xn and Fn=S?rnR?Sn:Xn-+Xn. 
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Now, since Rn is a positive symmetric matrix its eigenvalues A* are 
positive and we order them by 0<A?^- • *^A£. Following the accepted 
terminology we say that the system {<£J is strongly minimal if there exists 
a constant A0>0 such that infn Aî*=limn Ai^A0. Of course an orthogonal 
system in H or even "almost orthogonal system {<£J in //" is strongly 
minimal. 

THEOREM 2.5C. If Te L(H9 H) is one-to-one and A-proper with respect 
to T0 and if{<f>i} is strongly minimal in H, then equation (2.5-4) is uniquely 
approximation-solvable and the Galerkin method (2.5-5)-(2.5-6) is stable. 

PROOF. It follows from the results in [72], [88] and the strong mini­
mality of {&} in H that H^H ^ Km and WR^SJ ^f/2 for each n^l. 
Hence 

ll̂ nll ^ IISFl lirjl HJtfSJI ^ V lirjl and HfcJ ^ Xô1/2 \\ô{n)\\ 

for each n. Now, since T is one-to-one and y4-proper with respect to T0, 
there exists a constant c>0 and an integer «0=1 such that ||rn(jc)|| 2£C]|JC|| 

for all xeXn and n^n0. Consequently, if we assume that ||rn | |<r= 
i(^Mo), then ||Fw||<fc and so, by Theorem 2.5B, equation (2.5-12), or 
equivalently equation (2.5-8), has a unique solution b(n) for n^n0. For 
xn and yn given by (2.5-5) and (2.5-9) respectively we have the inequality 
(2.5-3), which in our case reduces to 

(2.5-13) \\xn-yJ^-c\\xn\\\\Fn\\+l\\hn\\. 

Since xn is the solution of equation (2.5-1) and xn-+x0 in H9 there exists 
a constant cr>0 independent of n or ƒ such that ||*n||̂ ff||.Xoll- Now, 
since (Rnein), e{n))^0\\e

(n)\\2 for all e{n) in Rn and for each n and 

II*» - ynf = (K(ain) - b{n)), aM - b<»>), 

the inequality (2.5-10) follows from the above discussion and the inequality 
(2.5-13) with/7=ac-1A^1/2 and q^lcr1. Hence the Galerkin method (2.5-5)-
(2.5-6) is stable. 

REMARK 2.5-1. Since T=I—C is 4̂-proper when C is compact, 
Theorem 2.5C implies the stability of the Galerkin method obtained in 
[162]. 

3. Equations involving nonlinear -̂proper mappings 

In this chapter we show that the approximation-solvability results ob­
tained for linear equations admit extensions to equations 

(3.1) Tx=f (xeXJeY) 
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involving nonlinear ^4-proper mappings under suitable additional con­
ditions on T. As before we associate with equations (3.1) nonlinear 
finite-dimensional approximate equations 

(3.2) Tn(x) = Qnƒ (* G Xn9 Tn = QnT\Xn9 Qnf e 7n), 

where F={Xn, Pn; Yn, Qn} is a given projectionally complete scheme for 
Banach spaces (X, Y). 

In §3.1 we survey the approximation-solvability results for equation 
(3.1) involving A -proper maps which satisfy either a nonlinear analogue 
of an ^-stability condition (3.1-1), ^T-coerciveness, or condition (+ ) . 
Applications are made to special classes of equations. Various sufficient 
conditions for the ,4-properness of T are given and a BVP for nonlinear 
elliptic equations is discussed. In §3.2 we study the approximation-
solvability of equations involving odd ^-proper maps with applications 
to various special classes of mappings. §3.3 treats the Fredholm alternative 
for asymptotically linear ,4-proper mappings with applications to nonlinear 
elliptic boundary value problems. 

3.1. Equation with approximation-stable A-proper mapping. The follow­
ing nonlinear analogue of Theorem 2.1A, which was proved by the author 
[112] characterizes nonlinear A -proper mappings if they are approximation-
stable (a-stable), where a map T:X—>Y is said to be a-stable (with respect 
to T) provided there exists a gauge function c{r) and an integer n0^ 1 such 
that for each n"^n0 

(3.1-1) \\Tn(x) - Tn(y)\\ > v(\\x - y\\) for x,ye Xn. 

THEOREM.3.1A. Suppose T.X-+Y is fa-continuous and approximation-
stable. Then equation (3.1) is uniquely approximation-solvable f or each f in Y 
if and only if T is A-proper and one-to-one. 

It is useful to note that the proof of Theorem 3.1 A does not use the 
hypothesis that Pn{x)-+x for x e X. If the latter is used and QnTPnx-+Tx 
for x e X, then Theorem 3.1 A remains valid without the condition that T 
is one-to-one. 

In view of the discussion in §1.1, Theorem 3.1 A implies the following 
corollary from which one deduces the surjectivity theorems for strongly 
monotone operators of Minty [89], Browder [19], Shinbrot [140], and 
Zarantonello [163] in case of complex monotone maps. 

COROLLARY 3.IB. Let X be reflexive with a projectionally complete 
scheme Txfor (X, X*). If T:X->X* is strongly monotone and either con­
tinuous, demicontinuous, or weakly continuous, then equation (3.1) is 
uniquely approximation-solvable for each f in X*. 
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As will be shown elsewhere, the importance of Theorem 3.1 A lies in the 
fact that if (3.1-1) holds, then the method (3.2) is stable in a sense analo­
gous to that used in §2.5. Theorem 3.1 A points to the importance of 
finding conditions which, assuming (3.1-1), would imply that T is A-
proper. To that end it was shown in [110] that if X and Y are reflexive, if 
QnTPnx-+Tx for x e X, and if T satisfies (3.1-1), then equation (3.1) is 
uniquely approximation-solvable if and only if T satisfies 

CONDITION (C). If {xn^xnj e Xnf} is such that xn^x in X and 
Tnj{xn)-+gfor some g in Y, then T(x)=g. 

To see for what classes Condition (c) can be verified by direct arguments 
we consider the following (see [115], [119]). 

DEFINITION 3.1C. Let K be a map of X into Y* such that #(0)=0, 
Kx^O for x.^0. A mapping T.X-+Y is called strongly K-monotone if 
(Tx-Ty, K(x-y))7>c(\\x-y\\)\\K(x-y)\\ for x,y e X, where c(r) is some 
gauge function. 

LEMMA 3.ID. Let V be a scheme for (X, Y) with X reflexive and let 
K:X-+Y* be such that 

(3.1-2) Q*Kx = Kx for all xeXn and each n. 

IfT:X-+Yis a strongly K-monotone mapping, then Tsatisfies Condition 
(c) if one of the following two conditions holds: 

(a) T is continuous everywhere and K is weakly continuous at 0. 
(b) T is demicontinuous and bounded and K is strongly and weakly con­

tinuous with R(K) dense in F*, and for each t >0 there is a kt>0 such that 
K(tx)=ktK(x)forxeX. 

In view of Lemma 3.ID, an immediate consequence of Theorem 3.1 A 
is the following corollary which contains the results of Browder-De 
Figueiredo [22] for strongly /-monotone operators when Y=X and 
K=J and Corollary 3.IB when Y=X* and K=I (see also [105] with K 
linear). 

COROLLARY 3.IE. Suppose T: X-+Y is strongly K-monotone and either 
(a) or (b) of Lemma 3.ID holds. Then equation (3.1) is uniquely approxima­
tion-solvable for each f e Y. 

Note that the most restrictive condition in Corollary 3.IE that K be 
weakly continuous everywhere is always satisfied if K is linear. 

It was observed by Browder [13] that in some cases (as in Lemma 3.ID) 
the verification of Condition (c) by direct arguments would require a 
considerable strengthening of the hypotheses (e.g. that K be weakly 
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continuous). Instead of Condition (c) he proposed the assumption of 
the solvability hypothesis and with it proved in [13] the following 

THEOREM 3.IF. Suppose T:X-+Y is continuous and approximation-
stable {Le. 3.1-1 holds). Then equation (3.1) is uniquely approximation-
solvable for a given f e Y if and only if it is solvable. 

In view of Theorems 3.1A and 3.IF, one has the following characteri­
zation of the ^4-properness of T analogous to Theorems 2.1 A-2.1C in the 
linear theory. 

THEOREM 3.1G. If T:X-+Y is continuous and approximation-stable, 
then the following assertions are equivalent: 

(a) T is A-proper and one-to-one, 
(b) * ( ! > F, 
(c) If{xn.\xnj e Xni} is bounded and Tnj(xnj)-^g for some g in Y, then 

there existsxeXsuch that Tx—g. 

The practical usefulness of Theorem 3.1 G stems from the fact that if we 
know (no matter how) that r i s surjective, then under condition (3.1-1) 
the map Tis one-to-one and ^-proper and thus equation (3.1) is uniquely 
approximation-solvable for each ƒ G Y. 

Using Browder's surjectivity Theorem 4 in [18] and Theorem 3.1G, one 
immediately deduces from Theorem 3.1 A a considerable strengthening 
of Corollary 3.1E. 

COROLLARY 3.1H. Let X and Y be Banach spaces with 7* uniformly 
convex. Suppose T.X-+Y is locally Lipschitzian and strongly K-monotone 
with c(r)=r and ||ÀJC|| = ||*|| for all x in X and such that (3.1-2) holds. 
Then equation (3.1) is uniquely approximation-solvable for each f e Y. 

It will be seen below that one can obtain approximation-solvability 
results for equation (3.1) involving ^4-proper mappings T without the 
assumption that T is a-stable or strongly Â-monotone. In view of this, it 
is important to find weaker conditions which would nevertheless imply the 
^4-properness of T: D c X-* Y. 

The first results in this direction for bounded continuous mappings T 
acting from a separable reflexive space Xinto X* were obtained by Pokhod-
jayev (see Condition 1 in [130]) and in somewhat more general form by 
Browder (see Condition (S) in [19]). In [119] the author extended the 
results of [19], [130] by modifying the condition (S) of Browder in such a 
way as to be applicable to mappings T:D<^ X-> Y and to be more in con­
sonance with the notion of the v4-properness with respect to a given scheme 
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T. Since the sum of two ^-proper mappings need not be A -proper [116], 
Browder [19] restricted the class of mappings satisfying condition (S) to 
those satisfying condition (S+) and showed that if T satisfies condition 
(S+), then Tt(x)=(l — t)T(x)—tT(—x) is ,4-proper for each te[09 1]. 
The latter result is important in various applications (see [16], [119]) of 
the theory of the generalized topological degree for ^4-proper mappings 
developed in Browder-Petryshyn [24], [25]. In [119] the author studied 
the relation of the ^4-properness of T: D c: X-+ Y to the modified conditions 
(S) and (S+) and, in particular, to mappings satisfying the generalized 
pseudo-monotonicity condition of Brezis [8]. The following result from 
[115], [119] will justify the preceding remarks and at the same time 
exhibit further classes of nonlinear mappings to which the theory of A-
proper mappings is applicable. 

DEFINITION 3.11. Let X be a reflexive Banach space, T={Xn,Pn; 
7W5 Qn} a projectionally complete scheme for (X, Y), K a mapping of X 
into Y*9 D an open convex subset of X, and T: / ) - • Y continuous. The 
mapping T is said to satisfy the modified condition (S) (resp. modified 
condition (S+)) if for any {xnj\xni e Xn.C\D} for which xnj-^x0 in Zand 
{TxnrTynj,K(xnryn))^0 (resp. lim supn(TxnrTynj,K(xn-yn))<: 
0) we have xnj-^x0 in X as/->oo, where {ynj\ynj

 G Xn^D) is s u c h that 
JV-^o asyWoo. 

THEOREM 3.1 J. Suppose the conditions of Definition 3.11 hold with the 
additional assumption that K is weakly continuous at 0 and (3.1-2) holds. 
Let C: D->Ybe compact andfipc) afunctional on X with J'(0)=0. Then the 
mapping T: D-+Y is A-proper with respect to T if any one of the following 
hypotheses holds: 

(Jl) T satisfies the modified condition (S); 
(J2) X has property (H) and there exists a continuous strictly increasing 

function xp ofR+ into R+ with y>(r)-+oo as r—*oo such that for each n 

(Tx - Ty,K(x - y)) ^ (r(||x||) - yflblDXIWI - IWI) for x,yeXn O Î). 

(J3) ƒ is weakly upper semicontinuous at 0 and there exists a continuous 
increasing function c(r) of R+ into R+ with r-*0 as c(r)->0 such that 
(Tx-Ty,K(x^y))+(Cx^Cy9K(x-y))+f(x-y)^c(\\x-y\\) for x,ye 
XnnD. 

REMARK 3.1-1. If we additionally assume that D is symmetric about 
0 G D and K is odd (i.e., K{—x)= —Kx for xeX) and define 

Ht(x) = - i - T(x) - - ? - T ( - x ) 
1 + t 1 + t 
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for x G D and / G [0, 1], then Ht is ^-proper for each t e [0, 1] if T 
satisfies the modified condition (S+) and, in particular, if either (J2) 
or (J3) holds. The last assertion also holds if 

(J4) T is of modified type (S),fis weakly continuous at 0 and (Tx—Ty, 
K(x-y))+(Cx-Cy, K(x-y))+f(x-y)^0for x,ye XnnD and n^ l . 

REMARK 3.1-2. Even when D=X the hypotheses in Theorem 3.1J are 
required to hold only on the dense set \JXn and not on the whole of X 
as in [9], [130] for Y=X* and K=I. When D=X, Y=X*, K=I, T 
bounded and continuous and ƒ weakly upper semicontinuous on X, 
Theorem 3.1J under condition (J3) was first proved in [130]. Independ­
ently of [119] and under stronger conditions, Theorem 3.1 J under 
conditions (J2) and (J3) were also obtained in [44]. 

In what follows we say that T: X->Yis K-coercive if there exists a func­
tion c(r) of R+ into R1 with c(r)->oo as r—*oo such that 

(3.1-3) (Tx, Kx) ^ c(||*||) ||AJC|| for xeX. 

Our next result is the following special case from [115] which establishes 
the approximation-solvability of À-coercive A -proper mappings. 

THEOREM 3.IK. Let (X9 Y) be Banach spaces, K a map of X into 7* 
for which (3.1 -2) holds and T: X-> Y A-proper and K~coercive. Let Mn : Xn-+ 
Yn be a linear isomorphism such that 

(3.1-4) (Mn(x), QlKx) > 0 for x e Xn with x ^ O . 

Then equation (3.1) is feebly approximation-solvable for each f in Y. 
Equation (3.1) is strongly approximation-solvable if it is uniquely solvable for 
a given f 

The proof of Theorem 3.IK is based on the properties of the Brouwer 
degree for mappings of oriented finite dimensional spaces of the same 
dimension (see [28]) and the following lemma. 

LEMMA 3.1L. If D is a bounded open subset of X and T an A-proper 
map of D into Y such that for some g e Y 

(3.1-5) Tx - tg ?*0 for all xedD and te [0, 1], 

then there exist w0=l and c>0 such that 

(3.1-6) ||rn(x) - tQng\\ ^ c forxe dDn9 n^n^te [0, 1]. 

Before we discuss some special cases of Theorem 3.IK we first observe 
that it admits a useful extension in which the A!-coerciveness of T is 
replaced by the more general 

CONDITION (3.1+). If {xn}<^X is any sequence such that Txn-+g for 
some g in Y, then {xn} is bounded. 
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Note that Condition (3.1+) is equivalent to the requirement that 
T~1(Q)={x e X\Tx e Q} be bounded whenever Q is precompact in Y. 
Condition (3.1+) is not only a weakening of (3.1-3) but also a proper 
weakening (see [127]) of the Condition (3.1#) given by 

CONDITION (3.1#). ||rx||-*oo as ||x||-*oo. 
In view of this, mappings of monotone type and of ball-condensing 

type which satisfy Condition (3.1 + ) have been recently studied by a num­
ber of authors (see [14], [41], [127], [134]). 

It is not hard to show (see [127]) that if r 0 >0 is given and T.X-+Y 
satisfies Condition (3.1+), then to each ƒ e F there correspond r>r0 and 
c > 0 such that 

(3.1-7) || Tx - tf\\ ^c forxE dB(0, r) and / e [0, 1]. 

In view of this and Lemma 3.1L, Theorem 3.IK admits the following 
generalization (see [125]). 

THEOREM 3.1M. Let (X, Y) be Banach spaces, K a map of X into Y* 
for which (3.1-2) holds andMn a linear isomorphism ofXn onto Ynfor which 
(3.1-4) holds. Let T:X->Y be an A-proper mapping such that 

(a) there exists r0>0 with (Tx, Kx)^0 when ||x||^r0. 
Then, if T satisfies Condition (3.1+), equation (3.1) is feebly approxima­

tion-solvable for each feY. Equation (3.1) is strongly approximation-
solvable if it is uniquely solvable for a given f 

We add in passing that Theorem 3.1 M is applicable, in particular, to 
mappings T:X->Y satisfying any one of the conditions of Theorem 3.1 J 
provided that for T satisfying either (Jl) or (J2) we also assume that T 
satisfies Condition (3.1+) and the hypothesis (a) of Theorem 3.1M. 

Let us observe that Theorem 3.1 M allows us to study the approximation-
solvability of the perturbed equations considered in [13], [112] of the 
form 

(3.1-8) Tx = Ax+Cx=f (ƒ G Y) 

where C is compact and A is ^4-proper. In this case the conditions of Theo­
rem 3.1 M are implied, for example, by the assumption: 

(b) A is K-coercive and there exists a constant c0 such that (Cx, Kx)^. 
-c0\\Kx\\forxeX. 

REMARK 3.1-3. To apply the preceding results to equation (3.1) 
involving mappings T from X to X* or from X to X we have to choose K 
and Mn in some specified way. We illustrate this by the following discus­
sion: 

(i) In the first case we set Y=X*, Y={Xn,Pn; R(P%),P%}, choose 
K=I and, if {<f>l9 • • • , <f>n} is any basis in Xn, set Mn(x)=Zti (0<, *)<Dt. 
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for x G Xn, where {O J cR(P*) is such that (Ot, ^ ) = ó „ , for (1 <^ij'^n). 
It follows that A^and Mw thus chosen satisfy conditions (3.1-2) and (3.1-4). 

(ii) In the second case we set Y—X9 T={Xn, Pn; Xn, Pn} and, assuming 
that A" is a F^-space with X* strictly convex, we may choose Mn=In 

and K=ƒ, where J is any duality map of X into X*. Since by [22], P*Jx= 
Jx for xe Xn,we see that in this case (3.1-2) and (3.1-4) hold for the above 
choices of Mn and K. 

Of course, it is sometimes possible to choose a suitable linear mapping 
K (see [105]) for which (3.1-2) and (3.1-4) hold. In that case the assump­
tion in Lemma 3.1D and Theorem 3.1 J that K be weakly continuous at 
least at 0 is always true. 

Before we state the next result which will illustrate the generality of 
Theorem 3.1 M we first recall that following [6] we say that F.X-+X is a 
generalized contraction on X if to each x in X there is OL(X) e (0, 1) such 
that \\Fx—Fy\\^cL(x)\\x—y\\ for y e X. One motivation for the extensive 
study of these maps Fis the fact proved by Kirk [65] that if its ^-derivative 
F'x is continuous in x, then F is a generalized contraction if and only 
if | |JFS||<1. It was shown by Wong [158] (see also [39]) that if Xis a re­
flexive Ilx-space and F:X->X is a generalized contraction, then F is Pi-
compact and, in particular, T=I—Fis ^-proper. Moreover, Tis injective 
and coercive. 

In view of the above discussion, Theorem 3.1 J and the discussion in 
§1.1, Theorem 3.1M implies the validity of the following corollary which 
unites and extends a number of results obtained in [9], [19], [42], [115], 
[119] for various classes of mappings by using different arguments. We 
add that the perturbed problems considered in the next corollary cannot 
be handled by the methods employed by the above mentioned authors. 
As before, it is always assumed that a couple of Banach spaces and a 
projectionally complete scheme are given. 

COROLLARY 3.IN. (Al) Let X be reflexive and T.X-+X* a continuous 
mapping of modified type (S) such that T satisfies condition (3.1+) and 
(Tx, x)^0 for all x e X-B(09 r) and some r>0. Then equation (3.1) is 

feebly approximation-solvable for each f e X*9 and strongly approximation-
solvable if (3.1) is uniquely solvable. 

(A2) Suppose C.X-+X* is compact and (Cx, x)^. —C0||JC|| for all x e X 
and some constant c0. If X is reflexive with property (H) and A:X-+X* is 
continuous and satisfies condition (J2) of Theorem 3.1J with K—I (and 
T=A), then equation (3.1-8) is feebly approximation-solvable for each 

f e X*, and strongly approximation-solvable if (3.1-8) is uniquely solvable. 
(A3) Let X be a Banach U^space with X* strictly convex and F:X->X 

ball-condensing such that (Fx,Jx)^(x9Jx) for all xeX—B(09r0) and 
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some r0>0, where J is any single valued duality map of X into X*. IfT=I—F 
satisfies condition (3.1+), then equation (3.1) is feebly approximation-
solvable for each ƒ in X, and strongly approximation-solvable if (3.1) is 
uniquely solvable. 

(A4) Let X be a reflexive U^space with X* strictly convex and C:X->X 
a compact map with (Cx, Jx)^—c0\\x\\ for all xe X and some constant c0. 
IfF: X-+X is a generalized contraction, then equation (3.1-8) (with A=I—F) 
is feebly approximation-solvable for each f e X, and strongly approximation-
solvable if (3.1-8) is uniquely solvable. 

(A5) Let (X,X*) be uniformly convex, X a U^space, J:X-+X* a 
normalized duality map, and C:X-+X compact with (Cx, Jx)^—c0\\x\\ for 
all xe X and some constant c0. If A : X-+X satisfies the conditions of Corol­
lary 3.1 H for K=J, then equation (3.1-8) is feebly approximation-solvable 
for each ƒ e X, and strongly approximation-solvable if (3.1-8) is uniquely 
solvable. 

REMARK 3.1-4. Assertion (Al) is also valid if T is assumed to be 
bounded, demicontinuous and of type (S). Similarly, (A2) is valid if A 
is assumed to be bounded and demicontinuous. 

o 

An application to elliptic BVP. Let W% and W™ be the Sobolev spaces 
introduced in §2.4. For a given ƒ e Lq, the generalized Dirichlet BVP for 

2 (-i)MD*(\D'u\p-*Du)+ 2 (-l)mDl'Bp(x,u,---,Dmu) 
(3 1 9) l*ISTO l/Mâm-i 

=fix) in Q 
D'u = 0 on dQ for |a| < m - 1 

O 

consists in finding a weak solution of (3.1-9), i.e., u e W™ such that 

(3.1-10) a(u, v) + b(u, v) = <ƒ, v) for all v in W?9 

where the Dirichlet forms a(u, v) and b(u, v) are given by 

(3.1-11) a(u, v) = 2 <|0a«r~2 D'u, D*v) (u, v e W™) 
(3.1-12) b(u,v)= 2 <B/x,«,---,D*tt),D'»> (u,velVZ). 

\fi\Sm-l 

It is easy to show that a(u, v) is well defined and in order for b(u, v) to 
be well defined we make the following 

ASSUMPTION I, The functions Bp(x, f), where £={fa:|a|^m} is a 
vector in some Euclidean space RM, are continuous in f for fixed x and 
measurable in x for fixed f. Moreover, there exists a real/7 e [2, oo) and 
a constant c>0 such that \Bfi(x, £)| ̂ c(l + HI*"1) for all x e Q and all £. 

file:///fi/Sm-l
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It follows from Assumption I, using Holder's inequality, that b(u, v) is 
well defined on W™ (see [14], [81]). Setting X=W™, we see that a(u, v) 
and b(u, v) are continuous linear functional of v in X and so they deter­
mine unique bounded continuous mappings A,B:X-+X* (=W~W) such 
that 

(3.1-13) a(u, v) = {Au, v) and b(u, v) = (Bu, v) for all p e l 

Denoting the norms in X=W™ and in X* by || • ||, we find as in [9] that 
for u and v in X 

(3.1-14) 
\(Au, v)\ < Hull»-1 \\v\\, (Au, u) = \\u\\», (Au, u) = \\Au\\ \\u\\. 

It follows from (3.1-14) that A is coercive and together with (3.1-13) that 

(Au -Av,u-v)^ (<K\\u\\) - <f>(\\v\\))(\\u\\ - \\v\\) for u,veX, 

where <f>{r)=rv~1, r^O. Since, by the Sobolev imbedding theorem, the 
injection of W™ into Jf™_1 is compact, it is not hard to show (see [14], 
[123]) that B defined by (3.1-13) is compact. 

The above discussion implies that the generalized Dirichlet BVP for 
(3.1-9) is equivalent to the solvability of the equation 

(3.1-15) Au + Bu = wf (u eX,wfe X*), 

where wf is the unique element in X* such that (wf, v)=(f, v) for all 
D G I T O apply (A2) of Corollary 3. IN to equation (3.1-15) we need the 
following 

ASSUMPTION II. There exists a constant c0 such that b(u, u)^.—c0||i/||mt3, 
for all u in W%. 

o 

If {^J c w™ is a Schauder basis (see [45]) and Y8 is the corresponding 
scheme for (X, X*), then (A2) of Corollary 3.IN implies the 
approximation-solvability of equation (3.1-15) (i.e., of (3.1-9)) in the form: 

THEOREM 3.10. Suppose that Assumptions I and II are satisfied. 
Then the generalized Dirichlet BVP for (3.1-9) is feebly approximation-
solvable with respect to T8for each ƒ e LQ and, in particular, the problem 
(3.1-9) has a weak solution for each f e LQ. It is strongly approximation-
solvable for f e LQ if it is uniquely solvable. 

3.2. Equations involving odd A-proper mappings. In this section we 
discuss the approximation-solvability of equation (3.1) involving odd 
mappings but without the assumption that T is a-stable or AT-coercive. 

Recall that T:X-+Y is odd on X if T(-x)=-T(x) for xeX. T is 
(^-homogeneous if T(tx)=t*T(x) for all xe X, all t^.0 and some <x>0. 
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If X is a real Banach space, C a compact linear map of X into X and 
X^O not an eigenvalue of C, then the classical result (see [64]) asserts 
that (XI—C)(X)=X. In [130] Pokhodjayev extended this result to certain 
nonlinear mappings by showing 

THEOREM 3.2A. If X is a real reflexive Banach space with a Schauder 
basis and A, C:X-+X* are odd, OL-homogeneous and such that C is compact 
and A is bounded, continuous and strongly closed, then (XA — C)(X)=X* 
whenever A^O and AAx—Cx^Ofor x^O. 

We add that for a reflexive space X with a Schauder basis the strongly 
closed maps T:X->X*9 as defined in [130], are ^-proper with respect to 
Ts. Theorem 3.2A was then used in [130] to obtain existence results for 
generalized Dirichlet BVP for quasi-nonlinear elliptic equations involving 
odd and a-homogeneous operators. In [115] the author extended Theorem 
3.2A to obtain a direct analogue of the classical linear result. We state 
Theorem 1.4 from [115] for the case when (X, Y) are real Banach spaces 
with a given projectionally complete scheme T. 

THEOREM 3.2B. Suppose A,C:X-+Y are odd, and cn-homogeneous, 
C is compact and A is A-proper. If ÀjéO and XAx—Cxj&Ofor #5*0, then 
the equation 

(3.2-1) XAx -Cx=f (feY) 

is feebly approximation-solvable for each f e Y. Equation (3.2-1) is strongly 
approximation-solvable if it is uniquely solvable. 

The proof of Theorem 3.2B is based on Lemma 3.1L and the following 
proposition which is of interest in its own right. 

PROPOSITION 3.2C. Let D be a bounded open subset ofX which is sym­
metric about 0 £ D and let T: D-> Y be odd and A-proper. 

Iff is a given element in Y such that 

(3.2-2) Tx- (/V 0 for x e dD and t e [0, 1], 

then the equation 

(3.2-3) Tx=f (xeD,feY) 

is feebly approximation-solvable in D, and strongly approximation-solvable 
if (3.2-3) is uniquely solvable. 

We add in passing that Proposition 3.2C includes the fixed point theorem 
for odd ^-compact mappings and, in particular, for ball-condensing 
and compact mappings. 
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In view of Proposition 3.2C, Theorem 3.2B admits the following genera­
lization established by the author in [120]. 

THEOREM 3.2D. Suppose T.X-+Y is A-proper and odd on X—2?(0, r) 
for some r^O. Suppose further that 

(Dl) To each f e Y there corresponds rf^r such that Tx—tf^0 for 
xedB(0,rf)andte [0, I]. 

Then equation (3.1) is feebly approximation-solvable for each feY. 
Equation (3.1) is strongly approximation-solvable if it is uniquely solvable. 

For Theorem 3.2D to be useful in applications, it is important to find 
practically verifiable conditions which would imply the validity of the 
hypothesis (Dl). In view of the inequality (3.1-7), it seems that condition 
(3.1 +) is the most suitable (and, in fact, the most general) for our purposes. 
Consequently, in virtue of (3.1-7), Theorem 3.2D implies the validity of 
the thus far most general and practically useful corollary. 

COROLLARY 3.2E. Suppose T: X-> Y is A-proper and odd on X—B(09 r) 
for some r^O. If T satisfies condition (3.1 +), then equation (3.1) is feebly 
approximation-solvable for each f in Y. Equation (3.1) is strongly approxi­
mation-solvable if it is uniquely solvable. 

REMARKS 3.2-1. (i) Since the condition (#) (i.e., || Tx\\->co as ||x||-*oo) 
as well as the condition (##) : "0 $ T(dB(0, r)) and T(tx)=taT(x) for 
all ||x|| }Zr, t > 1 and some a>0" are both properly stronger than Condition 
(3.1+), Theorem 1 in [120] follows from Corollary 3.2E. 

(ii) Note that Corollary 3.2E applies to mappings T:X-+Y satisfying 
either condition (Jl) or (J3) of Theorem 3.1 J if Tis also odd on X—B(0, r) 
and satisfies Condition (3.1+). 

(iii) If F.X-+X is ^-compact and, in particular, ball-condensing and 
such that Fis odd on X—B(09 r) and r=7-Fsatisfies Condition (3.1+), 
then Corollary 3.2E applies. In view of this, a number of existence theorems 
obtained in [127] and [157] can be imbedded into the constructions theory 
of .4-proper mappings under conditions similar to those used in [127], 
[157]. 

3.3. Fredholm alternative for asymptotically linear A-proper maps. 
Following [67] we say that a nonlinear map T.X-+Y is asymptotically 
linear if there exists a linear map T^ e L(X, Y), called the asymptotic 
derivative of T, such that for all x e X 

(3.3-1) T(x) = T^x) + B(x) with \\Bx\\l\\x\\ ->0as \\x\\ -^ oo. 

In [67] Krasnoselsky initiated the study of equations 

(3.3-2) x - Cx = ƒ (x e X, ƒ e X), 
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where C is compact and asymptotically linear, which was then continued 
by him and other authors (see [67], [4] for references). 

In [58] Kachurovsky extended (without proof) the classical Fredholm 
alternative to equation (3.3-2) with C compact and asymptotically linear. 
In [126] the writer extended the result of [58] to the case when C is asymp­
totically linear and &-ball-contractive with k<\ and then used it to 
obtain existence of classical solutions for nonlinear elliptic boundary 
value problems. An alternative, which also extends [58] in case X is a 
Hubert space, has been proved by Hess [53] for the case when X is re­
flexive and T.X-+X* is a bounded, demicontinuous, and asymptotically 
linear map of type (S) with T^ also of type (S). He applied his result to the 
generalized Dirichlet BVP for an elliptic second order equation. 

In [123] the writer extended the Fredholm alternative for linear A-
proper mappings (i.e., Theorem 2.3A) to equations 

(3.3-3) T(x) = ƒ (JC e X, ƒ e Y) 

involving an A -proper and asymptotically linear mapping T:X->Y. The 
application of our alternative to nonlinear elliptic boundary value prob­
lems were also given in [123], 

The basic result in this section is the following alternative in [123] 
extending Theorem 2.3A to nonlinear maps which, as will be seen, pro­
vides also a constructive generalization and unification of the alternatives 
in [53], [58], [91], [92], [126]. 

THEOREM 3.3A. Let T:X-^Y be an asymptotically linear A-proper 
mapping with an A-proper asymptotic derivative T^ e L(X, Y). Then either 
equation (3.3-3) is feebly approximation-solvable for each f in Y (and strongly 
approximation-solvable ifTis infective), or NiT^^iO}. In the latter case, 
assuming additionally that dim Â^(roo)=codim R{T^) and that 

(3.3-4) BxeN(Tl)L forxeX, where B = T - T*,, 

or equivalently that 

(3.3-5) R(T) cz RÇTJ, 

equation (3.3-3) is solvable if and only if f e N^T*)1 (=^(77
00)). 

The proof of Theorem 3.3A is based upon Theorem 2.3A, the finite 
dimensional Brouwer degree theory, and the following proposition which 
includes Proposition 1 in [53] for the type of spaces considered here. 

PROPOSITION 3.3B. Let T: X-+ Y be A-proper with the A-proper asymp­
totic derivative T^. 7/,iV(roo)={0}, then equation (3.3-3) is feebly approxi­
mation-solvable for each ƒ in Y. Moreover, equation (3.3-3) is strongly 



272 W. V. PETRYSHYN [March 

approximation-solvable if it is uniquely solvable {i.e., the Galerkin type 
method is convergent in this case). 

REMARK 3.3-1. (i) If Y=X, Xis a Il^space, C.X-+X asymptotically 
linear and fc-ball-contractive with k<l9 then C^ is also fc-ball-contractive 
(see [126]) and so T=I—C and roo=/—C00 are ^-proper by the results 
in [93], [156]. Moreover, it was shown in [94] that /(!T)=0. The above 
holds, in particular, when Cis compact. Hence Theorem 3.3A is applicable 
to equation (3.3-2). This implies in particular, the validity of the alter­
natives in [58], [126]. 

(ii) If X is reflexive with (X, X*) having a projectionally complete 
scheme I \ and T: X-+X* is bounded, demicontinuous, and asymptotically 
linear of type (S) with T^ also of type (S), then Tand T^ are ^4-proper. 
Now, since Xis reflexive, 7^ : X-+X* is of type (S) if and only if T* : X^X* 
is of type (S). Hence, Tj is also yi-proper and therefore, by Theorem 2.3B, 
i(roo)=0. Consequently, Theorem 3.3A is applicable to equation (3.3-3) 
for Y=X* and T satisfying the above conditions. This implies, in particu­
lar, the alternative in [53]. 

(iii) We add that in [91], [92] Necas studied the surjectivity of T: X^X* 
of the form T=A+B, where B is asymptotically zero and A is of type (S) 
and a-homogeneous with either A or T odd. It was shown in [123] that 
the results of Neöas can also be deduced from the corresponding results 
for ^4-proper mappings (see [123, Theorem 2]). 

(iv) The term "Fredholm alternative" is obviously not unambiguous 
in its uses for nonlinear operators. In particular, the present considerations 
have no point of contact with recent results of Pokhadjayev, Browder 
and others concerning the concept of "normal solvability" or "Fredholm 
alternative" for a class of differentiable mappings. 

Application of Theorem 3.3A to asymptotically linear elliptic BVP. 
Consider the approximation-solvability of the generalized Dirichlet 
BVP in W?=W%(Q) for the nonlinear elliptic equation of order 2m 

2 (-l),a,Da(aa,(x)Z)^) 
\*\.\P\<m 

<3'3~6) + 2 ( - l ) 1 ' 1 ^ * / * . «. •••,Z>™u)= ƒ(%), 
\fi\<m-l 

where the linear part is strongly elliptic with aafi satisfying the conditions 
of §2.4 and the functions Bfi(x, f) of the nonlinear part satisfy Assumption 
I of §3.1 for/?=2. For a given ƒ in L2, the generalized Dirichlet BVP for 
(3.3-6) calls for ueW? such that 

(3.3-7) Z(w, V) + b(u, v) = (ƒ, v) for all v e W% 
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where /(*/, v) is given by (2.4-5) and b(u, v) by (3.1-12). The conditions on 
aafi and Bfi(x, I) imply that 

(3.3-8) /(«, v) = (Lu, v)m and b(u, v) = (Bu, v)m (w, v e W%), 

where L, B\W™-+W™ are bounded and continuous with L linear and 
B nonlinear and compact (see §3.1). In view of this and the equality 
(f9 v) = (wf9 v) for a unique wf e W? and all v in JV™, (3.3-7) is equivalent 
to 

(3.3-9) Lu + Bu = wf (u, wf e W?). 

For Theorem 3.3A to be applicable to (3.3.6) we also impose (see B2 in 
[123]): 

ASSUMPTION III. There exist bfiy(x) G L°°(Ö) for |/?| <̂ /w—1 and \y\<|m 
and a continuous function d:R+-+R+ with d(t)/t->0 as t-+co such that 

£,(x, M, • • •, Dmu) - 2 bPy(x)Dyu 
\y\<m 

^<*(N«.i) forallM6#2
m. 

Along with (3.3-6) we consider the generalized Dirichlet BVP for 

(3.3-10) 

2 (-l)wD«(a„I>'iO + 2 (-l),'lD'(**DytO = 0. 
|«|. |0|<m |^|<m-l. |y|<m 

Now, Assumption III implies the existence of M G L(W™, W?) given by 

(MM, v)m = m(u, v) = £ ( ^ ( x ) ^ , Dp
v) (u, o E ffrj) 

|0 |<m-l . |y |<m 

such that Mis compact, since |m(w, w)|^olML.2lML-i.2 for u G #2™, and 

\\T(u) - r ^ i Q i L , , HBM - MuiL, 2 n „ „ 

I|MIL,2 llw|L,2 

where T=L+B and 77
00=L+M. In view of the Gârding inequality 

(2.4-10), L is v4-proper with respect to any given projectionally complete 
scheme ro=(Xn,Pn; Xn9Pn) for (W?, W?) and so are the mappings T 
and T^. Since r* =L*+M* is also ,4-proper, Theorem 2.3B implies that 
/(7,

oo)=0. Consequently, all the conditions of Theorem 3.3A are satisfied 
and therefore we deduce from the latter the following new results for the 
generalized Dirichlet BVP for (3.3-6) under the above conditions on the 
functions aaP(x)9 bPy(x) and Bfi(x, f) (see [123]), which provide analogues 
to Theorems 2.4A and 2.4B. 
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THEOREM 3.3C. If the generalized Dirichlet BVP for linear equation 
(3.3-10) has only null solutions in W? {i.e., JVr(7T

00)={0}), then the genera­
lized Dirichlet EVP for the nonlinear equation (3.3-6) is feebly approxima­
tion-solvable for each f in L2 (and, in particular, it has a weak solution for 
each f in Lg). It is strongly approximation-solvable if for a given f in L2 it 
has a unique weak solution (i.e., the Galerkin type method for (3.3-6) 
converges in W™}. 

THEOREM 3.3D. IfN(T^)^{Qi) and ifvu • • • ,vkisa basis for N(T*) c 
W? with fc=dim #(7^), then under the additional condition 

2 /B,(x, u, • • •, Dmu) - 2 hyD7u9 D\) = 0 (1 ^ j ^ fc), 

o 

the generalized Dirichlet BVP for (3.3-6) is solvable in W™ for a given f in 
L2 if and only if(f vj)=0for 1 <j^k. 

REMARK 3.3-2. Theorems 3.3C and 3.3D include the existence Theo­
rems 6 and 7 of Kachurovsky [59] obtained by him by other methods for 
the case when Nfi depends on x and D*u with |oc|̂ w—1 but not on D*u 
with |a|=jw and where l(u, u) is assumed to be positive definite, i.e., 
/(«, w)=cilMltn,a f°r u *n W™ and some Cx>0. Our theorems also include 
the existence Theorem 3 of Hess [53] obtained by him for the case when 
w=l . For other applications of Theorem 3.3A see [123]. 

4. Generalized degree theory for ,4-proper mappings and applications 
If D <= X is open and bounded, T: D-> Y satisfies suitable conditions and 

f$ T(dD), then the topological degree of T on D over/, deg(r, /),ƒ), 
is in principle an algebraic count of the number of solutions x e D of 
Tx=f For this count to be useful, it must have several crucial properties: 
additivity on the domain D, invariance under suitable homotopies of T, 
existence of a solution x in D of Tx=f if deg(r, D,f)^0, etc. 

In [80] Leray and Schauder extended the Brouwer degree to T:D^ 
X-+X of the form T=I+C with C compact. To carry through this ex­
tension, they used the uniform approximations of C by finite dimensional 
maps. In the recent development of nonlinear functional analysis and, in 
particular, in connection with the theory of nonlinear operators like opera­
tors of monotone and accretive type, operators of ultimately compact and 
condensing type and operators of A -proper type, it has become an impor­
tant objective to widen the scope of the degree theory beyond that of the 
Leray-Schauder degree. Degree theories of more general types were con­
structed for general classes of maps in Borisovich and Sapronov [7], 
Browder [16], [20], Browder and Nussbaum [23], Browder and Petryshyn 
[24], [25], Fitzpatrick [38], Nussbaum [93], Petryshyn and Fitzpatrick 
[128], Sadovsky [136], Skrypnyk [142], Wong [158], and others. 
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In [24], [25] Browder and Petryshyn introduced and studied the notion 
of the topological degree for an ^4-proper mapping T:Dcz X-+ Y in the 
context of constructive functional analysis. We generalized the Leray-
Schauder method by replacing uniform approximation by finite-dimen­
sional mappings by much more general approximation methods which, 
among others, include projectional and injective methods of Galerkin 
type. This degree theory was then further studied and applied by many 
authors, including Browder [16], [19],Deimling [30], Fitzpatrick [39], [42], 
O'Neil and Thomas [97], Nussbaum [43], Petry [100], Petryshyn [117], 
[119], Potter [133], Stuart [144], Webb [156], Wong [158], and others. 

In §4.1 we define and outline the basic properties of the generalized 
degree while in §4.2 the degree theory is applied to various fixed point 
and mapping theorems. In §4.3 we outline some results for Fréchet 
differentiable P-compact and ^4-proper mappings as well as some results 
for ^(-proper mappings of analytic type. New approximation-solvability 
results are outlined, 

4.1. Definition and properties of the generalized degree. As before we 
assume that (X, Y) are real Banach spaces with an oriented projection-
ally complete scheme F={Xn,Pn; Yn, Qn} for (X, Y) with respect to 
which the degree of T is given by the following definition. 

DEFINITION 4.1 A. Let D be a bounded open subset of X, T.D-+Y 
y4-proper and ƒ G Y— T(dD). Let Z '=Zu{+oo, — oo}, where Z denotes 
the set of integers. We define Deg(r, !>,ƒ), the degree of T on D over ƒ 
with respect to T, as a subset of Z' given by: 

(Al) The integer m e Deg(T, D, ƒ) if there exists an infinite sequence 
{«J such that deg(Tnj9 Dn , QnJ) is well defined and equals m for each j. 

(A2) +oo(— oo)eDeg(r, D,f) if there exists an infinite sequence 
{«,-} such that deg(rni, Dn., QUif) is well defined for each j and 
lim, deg(rn,, Dnj9 QnJ)= + i ) ( - oo). 

(The degree deg(rn, Gw, Qnf) used in Definition 4.1 A is the classical 
Brouwer degree for mappings of oriented finite dimensional Euclidean 
spaces of the same dimension.) 

Utilizing the properties of the Brouwer degree and of A -proper mappings, 
it was shown in [24], [25] that although, in general, Deg(r, J>, ƒ) is 
multivalued it has most of the useful properties of the Brouwer degree as 
the following theorem indicates. 

THEOREM 4.1B. Let Dbea bounded open subset ofX, T: 25-* Y A-proper 
and f a point in Y-T(dD). Then: 

(Bl) There exists an integer «0^1 such that Qnf$ Tn(dDn)for n^.n0. 
Hence for such n, deg(rn, Dn, Qnf) is well defined and, in particular, 
Deg(r, D9 ƒ) is a nonempty subset ofZ'. 
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(B2) IfDeg(T9 D9f)^{0}9 then there is x G D such that Tx=f 
(B3) Let H:Dx [0, l]-+Y be continuous in t, uniformly with respect to 

x G dD and such that H(', t):D-+Y is A-proper for each t G [0, 1]. Then, 
iff G Y is such that H(x, t)^ffor xGdDandtG [0, 1], Deg(#(-, t), D9f) 
is independent of t in [0,1]. 

(B4) Let D=DXVD29 Df=(D1nD2)udD1udD29 andf$ T{D'). Then 
T>eë(T9D9f)çzDeg(T9Dl9f)+Deë(T9D29f)9 with equality holding if 
either Deg(r, Dl9f) or Deg(r, D2,ƒ) is single-valued. (If Al9 A2czZ'9 

then A1+A2={a\a=a1+a29a1G Al9a2G A2} and we use the convention 
that + oo + (--oo)=Z'.) 

(B5) Suppose 0 G D and D is also symmetric about 0. If T: D-* Y is A-
proper with Tn odd on dDnfor each nandO$ T(dD)9 then Deg(r, D9 0) is odd 
(i.e., 2m $ Deg(r, D9 0)for any integer m) and, in particular, Deg(jT, D, 0) ^ 
{0} so that Tx=0 has a solution in D. 

REMARK 4.1-1. The following observation is, perhaps, in order. 
In defining Deg(r, D, ƒ ) it was assumed in [24], [25] that D was open with 
D a closure in X and T: D-> Y was continuous. However, in the proof of 
Theorem 4.IB these assumptions were not really used. The only conditions 
that were used are that Dn=XnnD is an open set in Xn with closure Dn 

and boundary dDn in Xn, that Tn: Dn c Xn-+Yn is continuous for each n, 
and that Dn^D and dDn<= dD for all n where D is not necessarily the 
closure of D in X or dD the boundary of D in X. It was noted in [39] 
that the homotopy property holds under the following weaker condition 
which will prove to be useful in applications: 

(B3') Let H:Dx[09 l]-+Y be such that for each n the map Hn:Dnx 
[0, \]-*Yn is continuous in t9 uniformly for x G dDn; H(t9 •) is A-properfor 
each t G [0,1 ] and if{xnj G dDn) and {tn) <= [0,1 ] are such that QnH(xnj9 tn) 
—•# in Y, then there are subsequences {xn.(k } and {tnj(k)} such that xnj(k)-+ 
x9 tn ->t and H(x9 t)=g. Then, if f G Y and H(x, t)j±ffor XGBD and 
t G [0, 1], Deg(r, D9 ƒ) is independent oft G [0, 1]. 

Theorem 4.IB has as corollaries a number of interesting fixed point 
and mapping theorems for ^-proper mappings, some of which will be 
mentioned here and others in §§4.2 and 4.3. 

An immediate and useful consequence of (B3) and the properties of 
linear ^4-proper mappings is the following corollary (see also [158]). 

COROLLARY 4.1C. If TGL(X9 Y) is A-proper and injective, then to 
each f G R(T) there corresponds B(0, r) such that Deg(r, B(09 r), ƒ) c { ± 1}. 

Another useful result for TGL(X9 Y) obtained by Fitzpatrick [42] 
will play an important role in the computation of the degree of an A-
proper mapping T in terms of its Fréchet derivative T'. 
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PROPOSITION 4.ID. If TeLÇX, Y) is A-proper and infective, then 
Deg(r, B(0, r), 0)=Deg(r, B(x0, r), T(x0))for any x0eX andr>0. 

The following result from [24] may prove to be useful in applications. 

PROPOSITION 4.IE. If T.D-+Y is A-proper, C:D^Y compact, 
f$T(dD) and | |CJC| |< | |7*- / | | for all xedD, then Deg(r, />,ƒ)= 
Deg(r+C, D,f). In particular, Tx+Cx=f has a solution in D if 
Deg(r,/>,ƒ)*{()}. 

Proposition 4.IE has been extended in [42] to the following. 

PROPOSITION 4.1F. Let T.D^Y be A-proper and f$T(dD). Then 
there exists c>0 such that if W\ D-> Y is A-proper, f $ W(dD) and \\ Wx— 
Tx\\^cfor x G 3D, then Deg(r, Z>,/)=Deg(^, D,f). 

Using Proposition 1.1C one can easily show the following 

PROPOSITION 4.1G. If T: D^>Y is a continuous A-proper map and fa 
andfx belong to the same component of X—T(dD), then Deg(r, D,f0)= 
Deg(r, D,fx). 

The second and technically more delicate part of the generalized degree 
theory for 4̂-proper mappings is the following theorem obtained in [25] 
for projectional schemes and in [24] for general schemes which gives a 
general sufficient condition for Deg(r, D, ƒ) to be single-valued. 

THEOREM 4.1H. Let D be a bounded open subset of X, T.D-+Y a 
continuous A-proper mapping and f$T(dD). Suppose that T=A + C, 
where C:D-+Y is compact and A maps D homeomorphically onto an open 
subset A(D) of Y, carrying D homeomorphically onto A(D). Let Tn= 
An+Cn:Dn-+Yn and suppose that An is an orientation-preserving homeo-
morphism of Dn into Yn such that 

\\An(x) - An(y)\\ £ «(II* - ƒ ||) for all x,yeDn and all n, 

where cc(t) is a continuous strictly increasing function of R+ into R+ with 
a(0)=0. 

Then there exists «0=1 such that for n^.n0, 

dcg(Tn, Dn9 Qnf) = deg^(/ + CA~\ A{D),f). 

In particular, Deg(r, £,ƒ)={degL8(I+CA-\ A(D),f)}. 

In view of the results outlined in Chapters 1 and 3, an immediate conse­
quence is the following corollary of Theorem 4.1H. 

COROLLARY 4.11. Suppose Y=X and X is a Tl^space. Then the con­
clusion of Theorem 4.1H holds if either (II) or (12) is satisfied: 

(II) A=I—S with S a contraction on X. 
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(12) A is strongly accretive (i.e. strongly J-monotone) on X and either X* 
is uniformly convex or A is uniformly continuous on bounded subsets ofX. 

REMARK 4.1-2. It follows from Corollary 4.11 that when X is a Tlx-
space, then Deg(^l + C, D9f) coincides with the Leray and Schauder 
degree degL8(I+ C, D,f) when A=/ and with the Browder and Nussbaum 
degree when A=I—S. 

It was shown by Webb [156] that if F: D^*X is ball-condensing, then 
T=I-F is ^-proper and in that case if ƒ £ T(dD), then Deg(r, D, ƒ) is 
single-valued and coincides with Sadovsky's degree degz(T, D,f). The 
original version of the above result was proved by Nussbaum [93] for F 
such that y(F(Q))^ky(Q) and %(F(Q))^kxD{Q) with Q c D and k<\. 

It was noted in [24] that if F: D-+X is Pi-compact, then for the homo-
topy Ht(x):Dx[0, l]-+X given by Ht(x)=(l-t)(I-F)x+tx we deduce 
from Theorem 4.IB the fixed point theorem (see Corollary 1.2H) ob­
tained in [129] without the use of the generalized degree. 

THEOREM 4.1 J. If D is a bounded open subset of X with 0 e D and F: 
25—*X is a Px-compact mapping which satisfies condition (TT^) on dD, then 
Deg(i—F, D, 0)={1} and, in particular, F has a fixed point in D. 

The proof of Theorem 4.1 J is based on the fact that the ^4-proper map 
I—Fis homotopic to the ̂ 4-proper map /. In general, the identity mapping 
ƒ plays an essential role in the homotopy theory for various degrees for 
mappings acting in X. The next theorem established by the writer in [117] 
shows that when X is reflexive, then the normalized duality mapping 
J:X-+X* can play a similar role for the generalized degree theory for 
mappings acting from subsets of JJfinto X*. 

THEOREM 4.IK. Let X be a reflexive U^space with X and X* having 
Property (H). Then the normalized duality mapping J: X-+X* is continuous, 
odd and A-proper. Furthermore, for each given r>0 and for any fixed w in 
X* with Jw(x)=J(x)-ws*0 for xsdB(0,r), Deg(Jw,B(0,r),0) is well 
defined, and 

DegG^, B(0, r), 0 ) ^ ( 0 } i / I M | < r 
and 

Deg(/„,i?(0,r),0) = {0} if\\w\\>r. 

We add in passing that an immediate consequence of Theorem 4.IK 
is that J is bijective, a fact proved earlier by Browder by different argu­
ments. We will make some applications in the next sections. 

For the sake of completeness we finish this section with the following 
remarks which will indicate further important and useful developments 
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in the generalized degree theory for ^4-proper mappings and their uniform 
limits. We do not go into details in these remarks since these results lie 
outside the scope of our paper but an interested reader should consult the 
original papers. 

REMARK 4.1-3. Using filters, ultrafilters and other concepts and results 
from nonstandard analysis developed by A. Robinson, Wong [158], 
[159] modified the definition of the generalized degree for a continuous 
y4-proper map T: D ç X-+ Y given in [24], [25] to obtain again a function 
Deg(r, D, / )={deg(r n , Dn, Qnf)} whose values are sequences of integers 
in which two degrees are equal if they differ by at most a finite number of 
integers. His definition allowed him to obtain Theorem 4.IB with equality 
in the "sum formula" (B4) and thus he was able to define a fixed point 
index for a P-compact mapping and compute it in the case of difîerentiable 
mappings. Some further results were obtained in [160]. 

REMARK 4.1-4. Browder [16] and Fitzpatrick [38] independently 
extended the notion of generalized topological degree to mappings T 
which are uniform limits on bounded sets of suitable sequences of A-
proper mappings. They showed that under suitable conditions on the 
mappings their degrees have properties analogous to those of Theorem 
4.IB and indicated applications to existence theorems for certain classes 
of equations. 

A discussion of the generalized degree for yl-proper mappings T:D<^ 
X-+Y along the lines mentioned in Remark 4.1-1 (with D and dD not 
necessarily the closure and the boundary of D in X) was recently given by 
Petry [100]. The interesting feature of the paper is that it provides some 
useful sufficient conditions for a map T:D<^ H-^H to be ,4-proper with 
respect to ro. In [97] it was shown that the notion of the multiplicity as 
defined by Cronin [29] can be incorporated into the notion of the genera­
lized degree for a suitable A -proper mapping. For fixed point index results 
see Stuart [144]. 

4.2. Applications to some fixed point and mapping theorems. This 
section is devoted to the application of the generalized degree to fixed 
point and mapping theorems involving ,4-proper mappings T\D^ X-+ Y 
defined on proper subsets of X. We are primarily concerned with three 
types of results: antipodes theorems, invariance of domain theorems, and 
structure of solution sets theorems. 

REMARK 4.2-1. Before we state some applications of the generalized 
degree given by Definition 4.1 A we should point out that, unlike other 
topological degrees, it embodies in its very structure a constructive aspect 
when applied to the solvability of a given equation Tx=f for x in D. 
This is obviously true when Deg(r, D, ƒ) is single-valued but it also hap­
pens in more general situations. Thus, for example, if 0 ^ Deg(T, D,f), 
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then there exists an integer H 0 = 1 such that deg(rw, Dn, Qnf)^Q for each 
n^.n0. Hence, for each n^n0, there exists an element xn G Dn such that 
Tn(xn)=Qnf Since Qnf-+f, the ^4-properness of T implies the existence 
of a subsequence {xnj} of {xn} and an element x0 in D such that xn.->x0 

asy-*oo and T(x0)=f, and in some cases (see Theorem 4.3G in §4.3) we 
can even assert that xn->xQ as «->oo. This is, of course, more than just 
the assertion that Tx=f has a solution in D if 0 £ Deg(r, D, ƒ). 

We know that, in general, a convex linear combination of two A -proper 
mappings is not ^-proper. In view of this fact, the following definition will 
be convenient. 

DEFINITION 4.2A. Let D be an open subset of X which is symmetric 
about 0 G D. If T: D-+ Y is a map such that H: D x [0, 1]-* 7, given by 

#*(*) = -^—f T(x) - - ^ - T ( - x ) 

for A: G D and f G [0, 1], is ^4-proper for each te [0, 1], then T is said to 
be of convex A-proper type. 

It follows from the results of Browder [19] that if X is reflexive, if D is 
also convex, and if T: D-*X* bounded, continuous, and satisfies condition 
(S+), then Tis of convex ^4-proper type. The paper [119], which extends 
the results of [19], [130], shows that if A" is reflexive, then T.D-+Y is of 
convex ^4-proper type if T is of modified type (S+) and, in particular, if 
T satisfies any one of conditions (J2), (J3), or (J4) of Theorem 3.1 J and 
Remark 3.1-1. Other maps which are of convex ^-proper type will be 
mentioned in Chapter 5. 

By using the generalized degree theory and Remark 4.2-1, it is not 
hard to establish (see [119]) the following results which include some basic 
classical theorems and indicate the importance of finding conditions for 
a given mapping T to be of convex ^4-proper type. We start with the fol­
lowing antipodes theorem. 

THEOREM 4.2B. Let D be a bounded open subset ofX which is symmetric 
about 0 G D. If T: / ) - • Y is a bounded mapping of convex A-proper type 
such that 

(4.2-1) Tx T* ATX-*) for xedD andXe [0, 1], 

then there exists x0 e D such that 7x0=0. Furthermore, there exists w0=l 
such that for each n^.n0 

(4.2-2) Tn(x) = 0 (xeDn) 

has a solution xn e Dn and xnj-+x0for some subsequence of {xn}, that is, 
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the equation 

(4.2-3) Tx = 0 

is feebly approximation-solvable in D, and strongly approximation-solvable 
ifx0 is unique. 

Theorem 4.2B implies the validity of the following two corollaries for 
which it is not hard to verify that T is of convex ,4-proper type. The first 
includes the well-known (see [67]) classical antipodes theorem for a com­
pact map. 

COROLLARY 4.2C. If D^X is as in Theorem 4.2B and F.D-+X is a 
k-ball-contractive with A:<1 and, in particular, compact, and if T=I—F 
satisfies (4.2-1), then for T—I—F the conclusions of Theorem 4.2B hold. 

COROLLARY 4.2D. Let Xbe a reflexive U^space, D=B(0, r), C: D~>X 
compact and S: D^-X contractive. If either S is weakly continuous or X* is 
strictly convex and a duality map J.X-+X* is weakly continuous, then the 
conclusions of Theorem 4.2B hold for T=S+C-I. 

We note that the existence part of Corollary 4.2D can be obtained with­
out any additional assumption on X or S as a corollary of an antipodes 
theorem for fc-set-contractions F:D->X with k<l obtained later in [93] 
but its constructive aspect would be lost. Another consequence of Theorem 
4.2B is the following result of the author [119]. 

THEOREM 4.2E. Let Dcz X be as in Theorem 4.2B and T: D-+ Y bounded 
and of convex A-proper type. Suppose that either (El) or (E2) holds, where 

(El) There is an odd A : D-+ Y such that \\ Tx-Ax\\ < \\Ax\\ for xedD; 
(E2) 7*5*0 and Txl\\Tx\\*T(-x)l\\T(-x)\\for x e dD. 
Then in either case equation (4.2-3) is feebly approximation-solvable in D. 

The proof of Theorem 4.2E consists in showing that (El) and (E2) imply 
the inequality (4.2-1). If Y=X, D=B(0, r), T=I-C and A=I-AL, then 
Theorem 4.2E, under condition (El), implies the following Leray and 
Schauder result (see [67]). 

COROLLARY 4.2F. If D=B(0, r), C: D-+X is compact and there exists 
a compact linear map L:X-+X and À^O such that \\Cx—Lx\\<\\x—XLx\\ 
for x e dD, then C has a fixed point in D. 

We complete this part of the section with another consequence of Theo­
rem 4.2B for maps satisfying condition (S+) and modified condition (S+) 
as well as for those satisfying the conditions of Theorem 3.1 J. (See Theorem 
7 in [119].) 
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THEOREM 4.2G. Let X be reflexive and D a bounded, open and convex 
subset ofX which is symmetric about Oe i ) . Let K be a mapping ofX into 
Y*, which satisfies the conditions of Theorem 3.1 J and Remark 3.1-1, and 
let T:D^>Y be a bounded continuous mapping such that (4.2-1) holds. 
Suppose further that T satisfies any one of the following conditions: 

(Gl) T satisfies (J4) of Remark 3.1-1; (G2) T satisfies (J3) of Theorem 
3.1 J; (G3) Tsatisfies the modified condition (S+). 

Then equation (4.2-3) is feebly approximation-solvable in D (in particular, 
equation (4.2-3) has a solution in D). 

REMARK 4.2-2. For the case where Y=X* and K=I, Theorem 4.2G 
was proved in [130] for the case when T satisfies conditions (E2) and (J3) 
under stronger conditions on Tand/ , and in [19] for the case when Tis 
bounded, continuous and of type (S+) and satisfies condition (E2). 
Finally we remark that Theorem 1 in Necas [92] follows directly from 
Theorem 4.IB when (X, X*) has a projectionally complete scheme or 
from Theorem 1 in [24] when X is separable. 

Invariance of domain theorems. In this section we state the basic in­
variance of domain theorem for locally A -proper, mappings T:D<^ X-> Y 
obtained by the writer in [117] and deduce from it some classical as well 
as some recent invariance of domain theorems for compact and noncom-
pact translations. 

Suppose that (P) denotes a certain property. We say that T:D<^X-+Y 
has a local property (P) if to each x0 there corresponds a neighborhood 
B(x0, r) with B(x09 r)<^D such that T:B(xQ, r)->Y has property (P). We 
first state the following lemma which, in addition to its independent in­
terest, plays an essential role in the proof of the invariance of domain 
theorem for locally ^4-proper mappings. 

LEMMA 4.2H. If T:B(x0, r)<^X-+Y is a continuous A-proper mapping 
such that T(x)^T(x0)for x e dB(x0, r) and Deg(r, B(x0, r), T(x0))^{0}, 
then there exists a neighborhood B(T(x0)9 s) c: Y consisting entirely of points 
which are images of points ofB(x0, r) under T. 

Theorem 4.IB and Lemma 4.2H imply the validity of the following 
invariance of domain theorem. 

THEOREM 4.21. If J ) c J is open, T:D^Y is a continuous locally A-
proper mapping such that Deg(r, B(x0,r), T{x^))^{Gi) for each xQ in D 
and some r>0 , then T(D) is an open set in Y. 

For Theorem 4.21 to be useful in applications we need some simple 
conditions which would imply Deg(r, B, T(x0))^{0}. It is easy to see 
that the next theorem serves that purpose. 
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THEOREM 4.2J. Suppose D<^X is open, T:D^*Y is continuous and to 
each x0e D there corresponds B(x0, r)<^D and a continuous map Ht(-): 
B(x0, r)x [0, l]-+Ysuch that 

(Jl) Ht(-), satisfies (B3') and, in particular, (B3) of Theorem 4. IB. 
(J2) H0(x)=T(x) for x e B(x0, r) and Ht(x)^T(x0) for xedD and 

/ e [ 0 , l ] . 
IfDcg(Hl9 B(x0, r), T(x0))^{0}, then T(D) is open. 

In view of Theorem 4. IB, Theorem 4.21 implies the validity of the follow­
ing result for local e-mappings established by Granas [48] as a general­
ization of the invariance of domain theorems of Schauder [137] and 
Leray [78]. T.D-+Y is called a local s-mapping if to each x0 E D there 
corresponds B(x0, eXo) with B(x0, eXo)c D such that Tx1=Tx2 implies that 
ll*i-*2ll <ex0 for any xl9 x2 e B(x0, eXo). 

COROLLARY 4.2K. If D^X is open and T=I+C:D^X is a local e-
mapping with C: D-^X locally compact, then T(D) is open in X. 

To see how Theorems 4.IB and 4.2J are used, let x0 be any point in D. 
Without loss of generality assume that x0=0 and r (0)=0. For some r > 0 
d e f i n e ^ ( 0 : ^ ( 0 , r ) x [ 0 , l ] ^ X b y / / ^ ) = ^ + ^ / ( l + 0 ) - C ( - - ^ / ( l + 0). 
One shows that Ht(-) satisfies condition (B3') with Ht(x)^0 for x in 
dB(0, r) and r e [0,1]. Thus, Deg(#„ B(0, r), 0) is independent of 
t e [0,1]. Since Hx is odd on B(0, r), Deg(T, B(0, r), 0)^{0}. Consequently, 
by Theorem 4.2J, T(D) is open. 

Using the same arguments one gets the following generalization of 
Corollary 4.2K which contains an invariance of domain theorem ob­
tained in [156]. 

COROLLARY 4.2L. Let X be a U^space. If D<z:X is open and T=I~ 
F.D-+X is a local e-map with F:D^»X locally k-ball-contractive with 
k<\, then T(D) is open. 

In view of the results of Nussbaum [93], Theorems 4.IB and 4.2J 
imply the validity of the following corollary which includes the result of 
Schauder in the case when X is reflexive, S weakly continuous, C is 
completely continuous and T=I— S— C is one-to-one. 

COROLLARY 4.2M. Let Xbe a U^space. IfD <^Xis open and T=I—S— 
C:D-*X a local e-map with S: D-+X and C: D^>X locally contractive and 
locally compact, respectively, then T(D) is open. 

Now we indicate some other classes of mappings to which Theorems 
4.21 and 4.2J are applicable (see [117]). 

THEOREM 4.2N. IfD^Xis open and TÀ=A+AI:D->Xis both locally 
one-to-one and A-proper for all A^O, then TX(D) is open for each A^O. 
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As a consequence of Theorem 4.2N we deduce the following corollary 
which contains the Browder and Minty result for locally strongly mono­
tone mappings. 

COROLLARY 4.20. Let H be a Hubert space, Da H open and A a 
continuous locally monotone map of D into H which satisfies the modified 
condition (S). If A is locally one-to-one, then TÀ(D) is open for each A^O. 

In view of Theorem 4.IK and (B3) of Theorem 4.IB, Corollary 4.20 
admits the following extension obtained [117] (see [21] for an analogous 
result but under different conditions). 

THEOREM 4.2P. Let X be reflexive with X and X* having Property (H). 
If T is a locally monotone and locally one-to-one map of an open set D^X 
into X* which satisfies condition (S) on D, then T(D) is open in X*. 

Using Theorem 4.IK and the generalized degree theory for uniform 
limits of ^4-proper mappings, Theorem 4.2P has been further extended 
in [38]. 

Structure of solution sets. It was noted in §1.2 that the result in [71], 
[30], [153] concerning the structure of fixed point sets has been extended 
by Fitzpatrick [39], [42] to equations involving ,4-proper mappings and 
their uniform limits. For ^4-proper mappings this extension can be stated 
in the following form. 

THEOREM 4.2Q. Let Da X be open and bounded and T: 5-> Y A-proper 
and proper. Suppose there exists a sequence of A-proper mappings Tk:D->Y 
such that 

(Rl) sup{||r*(x)-7X*)ll |* G D}=ok->0 as fc->oo, 
(R2) Tk is one-to-one when restricted to ( J * ) - 1 ^ ^ , ôk)). 

Then *ƒ Deg(r, D, 0)^{0}, T-^O) is a continuum. 

The proof of Theorem 4.2Q was based on Theorem 4. IB and Proposition 
4.IF. Deimling [30] had earlier obtained a result similar to Theorem 4.2Q 
for continuous ^[-proper mappings T: D <= X->X but his proof, unlike 
that of [42], depended essentially upon the fact that T and Tk were A-
proper. It was already noted in [30] that the result of [71] follows from 
Theorem 4.2Q when Y=X, T=I-C and Tk=I-Ck with C and Ck com­
pact. In [42] Fitzpatrick deduced as corollaries of Theorem 4.2Q the 
known results obtained in [71], [30], [153] as well as some new ones. 
In addition to those already mentioned we state as illustrations two further 
corollaries, the first of which is due to Vidossich [153]. 

COROLLARY 4.2R. Let C\B(x^r)aX->X be compact and T=I— 
C.B-+X be such that y0 $ T(dB) where y0=T(x0). Suppose there exists a 
sequence of compact mappings Ck:B->X such that Tk=I—Ck:X-+X is a 
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homeomorphism for each k. If{Tk} converges uniformly to T, then T~x(y0) 
is a continuum. 

COROLLARY 4.2S. Let D<^X be open and bounded, T\D->X Px-
compact with T(dD) bounded and I— T proper and J-monotone. Then if 
the fixed point set F(T)^ 0 and F(T)ndD= 0, F(T) is a continuum. 

4.3. Fréchet differentiable and analytic type A-proper mappings. In the 
first part of this section we outline some basic results obtained in [129], 
[158], [39] for F-difTerentiable P-compact and ^-proper mappings. In 
the second part we state the results obtained in [133] for y4-proper map­
pings of the analytic type. We conclude the section with some new results 
involving the strong approximation-solvability of the equation Tx=f 
(x G D) having an isolated solution X0G D with an ^-proper F-derivative 
T'Xo at x0 G D. 

Recall first that if D a X is open and T: D^ Y, then T is said to be F-
differentiable at x G D if there exists T'x G L(X, Y), called the F-derivative 
of T at x, such that for each y in D one has 

(4.3-1) 

Tx-Ty = T'JLx - y) + R(x,y) with ||*(*'y)} ->0 as \\x - y\\ - 0 . 
II* - y\\ 

It is known that if C: D c: X-+X is compact and F-differentiable at x G D, 
then C'x is also compact. It was shown in [161] that the converse is false. 
However, Vainberg has shown in [147] that if C:X->Yis F-differentiable 
at each XGX, CX is compact and C':X-+L(X9 X) defined by x-+Cx is 
compact, then C is compact. It was noted in [42] that an example of [161] 
can be used to show that T.X-+X can have an 4̂-proper (in fact, in­
compact) F-derivative Tx at each XGX without itself being ,4-proper. 

EXAMPLE 4.3-1. Let X=l2 and C(x)=2Zi (&, *)2& for x G /2, where 
{^J is the natural basis for Z2. Then T= ƒ— C is not ̂ -proper since T<f>~0 
and so PiT$i=0-+0 as f-*oo. But {<£J has no convergent subsequence. 
Since Cx(y)=2£i (x, <f>t)(y9 &)<̂  for each y in l2, Cx is compact for each 
x G l2 and TX=I— Cx is ,4-proper. 

An analogue of Vainberg's result was obtained in Petryshyn and Tucker 
[129], for P-compact F.X-+X under strengthened continuity conditions 
onFx. 

THEOREM 4.3A. Let X be reflexive and let F.X-+X be F-differentiable 
at each XGX. Suppose that F':X^-L{X9 X) is completely continuous 
{i.e., F'x -+FX in L(X9 X) ifxj—^x in X). Then Fx isP-compact at each x in 
X if and only if F is P-compact. 
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Using the technique of [129], it was shown in [39] that an analogous 
result holds for an P-differentiable ^4-proper mapping T.X-+Y with X 
reflexive under the following slightly weaker continuity condition : 

Ty (x — zn) — Tx(x — zn) - • 0 whenever yn-^x and zn-^x in X. 

It was shown in [129] that if A:X-+X is a linear P-compact operator 
and A>0 is not an eigenvalue of A, then XI—A is bijective. This fact was 
then used to show that if P has a fixed point x0 in Xand Pis P-differentiable 
at x0 with I—F'XQ injective, then x0 is an isolated fixed point of P. Using 
his modified version of the generalized degree, in [159] Wong extended 
to P-compact mappings with P-compact P-derivatives the theorem of 
Leray and Schauder [80] which states that ifC:X-+Xis an P-differentiable 
compact mapping and x0 e X is a fixed point of C such that T'XQ=I— C'XÙ 

is injective, then there exists a neighborhood B(x0, r) such that 
deg^(P, B(x09 r), T(x0))=degLS(T'Xo, 5(0, r), 0). 

In [42] Fitzpatrick extended the results of [80], [159] to the generalized 
degree for A -proper mappings as given by Definition 4.1 A by proving the 
following basic theorem. 

THEOREM 4.3B. Suppose D e l is open and bounded and T:D^>Y is 
A-proper with F-derivative TXQ at x0e D such that TXQ is A-proper and in­
jective. Then x0 is an isolated solution ofTx= T(x0) (x e D) and there exist 
a neighborhood B(x09 r)czD such that 

Deg(T, J3(x0, r), T(x0)) = D e g ^ , B(x0, r), T'm%(xJ). 

Combining Proposition 4.ID and Theorem 4.3B the following genera­
lization of the classical result has been obtained in [42]. 

COROLLARY 4.3C. Under the conditions of Theorem 4.3B, 

Deg(7\ B(x0, r), T(x0)) = D e g ^ , B(0, r), 0). 

Let us remark that in virtue of Proposition 1.1C and the first part of 
Theorem 4.3B or the corresponding result for P-compact mappings it 
follows (see [42], [159]) that if T: D e l -> Y is a continuous ^-proper 
mapping, if T(x0)=f for some x0 e D and if TXQ exists, is ^-proper and 
injective, then there are at most a finite number of solutions in D of the 
equation Tx=f. 

A-proper mappings of analytic type. If Z is a complex Banach space and 
U an open subset of Z, then a mapping ƒ of U into Z is said to be complex 
analytic if for each pair x and y of Z with x in U9 the function f(x+ fy) 
of a single complex variable I is analytic in | on some neighborhood of 
the origin. In [27] Cronin used the Leray and Schauder degree to establish 
existence and uniqueness theorems for a class of compact complex analytic 
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operators. In [17] Browder introduced and studied the notion of a mapping 
of analytic type acting in a real Banach space and showed that a complex 
analytic mapping, if considered as operating in the real space obtained 
from the complex space by ignoring the complex structure, is of analytic 
type. This allowed him to extend the results of [27], [139] to a wider class 
of mappings of analytic type. 

Using the generalized degree developed in [24], [25], Potter [133] 
extended Browder's results on analytic type compact operators to analytic 
type ^-proper mappings. An interesting consequence of these results in 
[133] is the uniqueness theorem for fc-ball-contractions with k<\ acting 
in I^-space X. 

DEFINITION 4.3D. Let X be a real n^space, U<^X open and T a 
continuous map of U into X. Then T is said to be of analytic type with 
respect to T0 if the mappings Tn:Un^Xn->Xn are of analytic type in 
the sense of Browder (see [17* Definitions 1, 2 and 3]). 

Using Browder's finite dimensional results from [17], Proposition 1.1C 
and Theorem 4.IB, the following results were obtained for ^4-proper 
mappings. 

THEOREM 4.3E. Let U<=X be open, D^U bounded and open with 
Z) <= 17 and T: U-+X a continuous map of analytic type which is A-proper on 
D. LetfeX-T(dD). Then 

(El) Deg(r, Z>, ƒ) contains no negative integers; 
(E2) 0 <£ Deg(r, D,f) if and only iff e T(D); 
(E3) If I 6 Deg(T, D,f), then T^fynD is connected; 
(E4) If T(D) contains a point of a given component G of X—T(dD), 

then Gcz T(D). 
Moreover, suppose that for each f e X—T(dD) the set T-x(f)nD is 

totally disconnected. Thenforanyfe X—T(dD)such that 1 e Deg(r, /),ƒ), 
T~1(f)nD is a single point; and for the component G ofX—T(dD) con­
taining f T is a homeomorphism ofT~\G)C\D onto G. 

Let Z be a complex Ilj-space and let X be the real Banach space ob­
tained from Z by ignoring the complex structure. Obviously X is a ITi-
space and if F\D(F)<^Z-+Z is A:-ball-contractive, then it is fc-ball-con-
tractive when considered as operating in X. Hence, by a result of Webb 
[156], (see also Nussbaum [93]), T=I—Fis ^-proper. 

Using the above fact, the second part of Theorem 4.3E and certain 
results of Browder (see [19, Chapter 15]), the following uniqueness 
theorem has been obtained in [133]. 

THEOREM 4.3F. Let Z be a complex U^space, U<^Z open and D an 
open convex bounded subset of U with D<^U. If F: U->Z is complex 
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analytic and k-ball-contractive with fe<l as a map of D into Z such that 
F{dD) c D and Fx^xfor x e dD, then F has a unique fixed point in D. 

Strong approximation-solvability. In §3 we outlined various results 
concerning the unique and strong approximation-solvability of the equa­
tion 

(4.3-2) T(x)=f (xeD,feY) 

involving an ^4-proper mapping T: D c: X-+ Y under the assumption that 
equation (4.3-2) has at most one solution. Assuming that T has an A-
proper F-derivative at a solution x0 e D of (4.3-2) and using Corollaries 
4.3C and 4.1C we strengthen here the approximation-solvability results 
for (4.3-2) without the uniqueness assumption. Thus we extend to equation 
(4.3-2) Theorems 3.1 and 3.2 of Krasnoselsky [67] (see also Vainikko 
[148]) which treat the case where ƒ=(), T=I—C, and C:D->X is compact. 

Recall first that T is continuously F-differentiable at x0 e D if T is 
F-differentiable in a neighborhood of JC0 in D and \\T'm— T'Xo\\-+0 as x-+x0. 
In view of (4.3-1), this implies that 

(4.3-3) \\R(x, y)\\l\\x - ƒ || - • 0 as x -> x0 and y -+ x0. 

THEOREM 4.3G. Let P e l be open and T:D-+ Y A-proper. Let x0eD 
be a solution of equation (4.3-2) and suppose that T is F-differentiable at 
x0 with T'Xo infective andA-proper. Then equation (4.3-2) is strongly approxi­
mation-solvable in B(x0,r)<=^P for some r>0 , i.e., there exist r > 0 and 
«o=l such that equation (4.3-2) has x0 as its only solution in B(x0, r)<^D 
and the equation 

(4.3-4) Tn(x) = Qnf (x E Bn(x0, r) = Xn n B(x0, r)) 

has a solution xne Bn(x0,r) for each n"^n0 such that xn-+x0 as n-+co. 
Moreover, if we set y=\\(Tx^~1\\, then for any e e (0, y) there exists n± 

(=no) such that 

(4.3-5) \\xn-x0\\^(y-s)-^\\Txn-f\\ forn^n^ 

If we also assume that T is continuously F-differentiable at x09 then there 
exists n2 (^nx) such that equation (4.3-4) is uniquely solvable for n>n2. 
Moreover, there is a constant M which depends on \\ T'XQ\\ , y and/?=sup|| Qn\\, 
such that 

(4.3-6) ||jctt — XQII ^ M \\x0 — Pnx0\\ for all sufficiently large n. 

PROOF. We shall outline the proof. Note that, by Corollaries 4.3C and 
4.1C, there exist r > 0 and n0^l such that x0 is the only solution of (4.3-2) 
in B(x0,r) (cD) and deg(rn, Bn(x0, r), Qnf)*0 for n^n<>. Hence 
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there exists xnEBn(x0, r) such that Tn(xn)=Qnf and so, by the A-
properness of Tand the property of B(x0, r), xn-+x0 as n-+co. In view of 
this, our conditions on T'XQ and the equality 

ƒ— Txn — R(X09XQ — xn) = Tx0 — Txn — R(x0,x0 — xn) = T'xJ^x0 — xn)9 

it follows from (4.3-1) and Theorem 2.1 A that estimate (4.3-5) holds for 
some nx (^n0). 

To prove the second part of Theorem 4.3G, note that if {zn} <= B(x0, r) 
is such that zn-+x0, then since T is continuously F-differentiable at x0 

there exist c>0 and n2 (^«i) such that 

|IÔnT^(x)|| ^ c \\x\\ for all xeXn and all n ^ n2. 

From this and the fact that \\R(Pnx0, Pnx0—xn)\\l\\Pnx0—xn\\-+0 as 
n->co, it follows that equation (4.3-4) is uniquely solvable in B(x0, r) 
for each n^n2. Setting zn=Pnx0 and using the fact that QnTxn=Qnf 
with Tx0=f and the equality 

QnT'z(xn - zn) = QnTxn - QwTzn - QnR(zn9xn - zn) 

= Qn{Tx0 - Tzn - R(zn9 xn - zn)} 

we see that to any given e e (0, c) there exists «3 (^w4) such that 

(c - £) ||xn - z j | ^ £1|Tx0 - TzJ for n > n3 where \\QJ <, P for all n. 

On the other hand, | | 7 * 0 - r z n | | ^ | | r ; j | ||zn-x0ll+fiil|z»-*oll for H^/*4 

(^w3) and any given e^O. Combining the above inequalities one obtains 
the estimate (4.3-6). Q.E.D. 

REMARK 4.3-1. Theorem 4.3G is applicable, in particular, to the case 
when Y=X,f=0 and T=I—F9 where F.D-+X is P^compact and, in 
particular, ball-condensing or compact mapping. Thus, Theorems 3.1 and 
3.2 in [67], as well as Theorem 7 in [108] for A=l (without the restricting 
assumption (23) used in [108]), are deducible as corollaries of Theorem 
4.3G. 

5. Existence theorems and pseudo-̂ -proper type mappings 

In preceding sections we outlined the theory of A -proper maps. Among 
other results, we showed the intimate relation of ^-properness to the 
question of the approximation-solvability of equations. Although the class 
of ^4-proper maps is quite large, there are existence theorems for operator 
equations (e.g. with weakly closed or with monotone type operators) 
for which the ^4-proper mapping theory is not directly applicable. This is 
not surprising since A -properness is connected with constructive solvability 
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and one cannot expect this property of all equations for which existence 
of solutions can somehow be established. 

However, it was noted in [118] that a closer look at [̂-proper mapping 
theory suggests that if one is primarily interested in its existential rather 
than its constructive aspect, then the same approach can still be used to 
obtain existence theorems for a much wider class of pseudo-A-proper 
maps and for uniform limits of ^-proper and pseudo-̂ 4-proper maps. In 
this section we present three basic existence theorems for equations in­
volving the above classes of mappings and then use these theorems to de­
duce, on the one hand, fixed point theorems for G-operators, Pi-compact, 
ball-condensing and weakly closed operators and, on the other hand, 
surjectivity theorems for operators of weakly closed, AT-monotone and, 
in particular, of monotone type. As a result, we deduce from our general 
results a number of theorems obtained earlier by various authors and 
methods. 

The price we pay for using these 4̂-proper type methods to obtain 
existence theorems for such a general class of mappings T:D^X->Y is 
the requirement that the spaces X and Y have a projectionally complete 
scheme (or at least be separable since the latter case can be handled by 
using the more general schemes as, for example, in [24], [112], [115], 
[50]). We add that, as will be seen below, for many special classes of 
pseudo-̂ 4-proper mappings our approach provides also the possibility of 
obtaining solutions as weak limits of finite dimensional approximants. 

5.1. Equations involving pseudo-A-proper mappings. Let (X, Y) be a 
pair of real Banach spaces, D a subset of X, T & map of D into Y and 
r={Xn9Pn; Yn9 Qn} SL projectionally complete scheme for (X, Y) which 
allows us to associate with the equation 

(5.1) T(x)=f (xeDJeY) 

a sequence of approximate equations 

(5.2) Tn(x) = Qnf (x e Dn9 Tn = QnT\D%9 Qnfe Yn). 

DEFINITION 5.1 A [118]. A mapping T:D^ X-+ Y is said to be pseudo-
4̂-proper with respect to T if Tn:Dn->Yn is continuous and if T satisfies 

condition (h): if {xn^xnj e DUj} is any bounded sequence such that 
Tnj(Xn)-*g for some g in Y9 then there exists xe D such that Tx=g. 

Mappings satisfying condition (h) have been introduced in [114] and 
further studied in [118], [121] and in Wong [158]. As we shall see later for 
the case when Y=Xthe concept of a pseudo-i4-proper mapping is related 
to the notion of a G-operator introduced by de Figueiredo [36]. Unless 
stated otherwise, it is always assumed that the Banach spaces (X9 Y) 
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have a projectionally complete scheme T and to say that T is pseudo-
4̂-proper means that it is so with respect to that particular scheme. In 

what follows AT will be a mapping (in general nonlinear) from Z to Y* such 
that #(0)=0, Kx7*0if x^Oand (3.1-2) holds (i.e., Q*Kx=Kx for x e Xn). 
The mapping Mn will always be a linear isomorphism of Xn onto Yn such 
that (3.1-4) holds (i.e. (Mn(x), QtK(x))>0 for xeXn with x*0). 

It turns out that the existence part of Theorem 3.IK remains valid for 
pseudo->4-proper mappings (see the author's paper [121] for the proofs of 
most of the results mentioned in this section). 

THEOREM 5.1B. Let K and Mn satisfy (3.1-2) and (3.1-4) respectively. 
(Bl) If Dis a bounded open subset ofX with 0 e D, T: D-+Ypseudo-A-

properandfan element in Y such that 

(5.1-1) (Tx9Kx)^(f,Kx) forxedD, 

then equation (5.1) has a solution in Dfor each f satisfying (5.1-1). 
(B2) If T:X-+Y is pseudo-A-proper and K-coercive, then equation 

(5.1) has a solution x in X for each f in Y. 

The proof of Theorem 5.IB is based on the following known finite 
dimensional fixed point theorem [28]. 

LERAY-SCHAUDER THEOREM. Let V be a finite dimensional Banach 
space, G an open bounded subset of V with OeG and A : G-+ V a continuous 
mapping such that Axj& Xx for xedG and A> 1, then A has a fixed point in 
G. 

REMARK 5.1-1. Observe the qualitative difference between Theorems 
3.IK and 5.IB. Theorem 3.IK yields essentially a constructive existence 
of solutions of equation (5.1) involving ̂ 4-proper mappings while Theorem 
5.IB yields only the existence of solutions of equation (5.1) involving 
pseudo-./4-proper mappings. Nevertheless, as we shall see later, for many 
special classes of pseudo-y4-proper mappings our approach provides 
also the possibility of obtaining solutions of equation (5.1) as weak 
limits of solutions {xn\xn e Dn} of equation (5.2) especially when the 
uniqueness is known. 

In view of this it makes sense to introduce the following 
DEFINITION 5.1C. Equation (5.1) is said to be weakly approximation-

solvable if equation (5.2) has a solution xn e Dn for all sufficiently large n 
such that xn—±x in D and Tx=f 

Special classes of pseudo-A-proper mappings. In what follows we con­
sider some important examples of pseudo-y4-proper mappings T: D c X-+ Y 
for which Theorem 5.1B is applicable. In the Historical Remarks we will 
indicate the relation of the results presented in various corollaries below 
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to fixed point theorems and surjectivity theorems obtained by other authors 
for various special classes of mappings and usually by different arguments, 

(al) Weakly closed and weakly continuous mappings. Recall that 
T: D-+ Y is said to be weakly closed if whenever {xn} cr D is a sequence 
such that xn-^x in X and Txn-^h in Y, then xe D and Tx=h. It is not 
hard to see that if Zand Fare reflexive, K:X-^Y* demicontinuous with 
R{K) dense in Y*, T.D-+Y bounded and weakly closed and (3.1-2) 
holds, then T is pseudo-^-proper. In particular if D is also convex and 
T: D-+ Y weakly continuous, then Tis pseudo-^-proper for Y not neces­
sarily reflexive. Hence, an immediate consequence of Theorem 5. IB is the 
following 

COROLLARY 5.1D. LetKandMn satisfy (3.1-2) and (3.1-4), respectively. 
Assume also that X is reflexive and K.X-+Y* is demicontinuous with R{K) 
dense in Y*. 

(Dl) Let D be a bounded open subset of X with 0 e D. Suppose Y is 
reflexive and T:D-*Y is fa-continuous, bounded, and weakly closed. 
If f 'e Y satisfies (5.1-1) of Theorem 5.1B, then there exists x0 e D such 
that Tx0=f. 

(D2) If T:X-+Y is weakly continuous and K-coercive, then equation 
(5.1) is solvable for each f s Y. Equation (5.1) is weakly approximation-
solvable if it is uniquely solvable. 

(a2) K-monotone mappings, Generalizing the notion of a monotone and 
a/-monotone mapping, we say that: 

'T: X — Y is K-monotone if {Tx - Ty, K{x - y)) ^ 0 for x,ye X". 

It is not hard to show that if X is reflexive, K a strongly and weakly 
continuous mapping of X into Y* which is a-homogeneous for some 
a^l and whose range R{K) is dense in 7*, and T a demicontinuous 
-K-monotone mapping of X into Y, then : 

(i) T(B(0, r)) is closed in Y for each r>0. 
(ii) T is pseudo-A-proper. 
In view of (ii), Theorem 5.IB implies the validity of the following 

result. 

COROLLARY 5.IE. Suppose X is reflexive, K and Mn satisfy (3.1-2) 
and (3.1-4) respectively, and K satisfies the additional conditions mentioned 
above. Let T be a demicontinuous {or a weakly continuous) K-monotone 
mapping ofX into Y. 

(El) If there is a ball D=B{0, d) such that for a given f in Y the inequality 
(5.1-1) holds, then equation (5.1) has a solution in D. 

(E2) If T is K-coercive, then equation (5.1) is solvable for each f in Y. 
Equation (5.1) is weakly approximation-solvable if it is uniquely solvable. 
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(a3) Mappings of type (PKM). In analogy with the notion of a pseudo-
monotone mapping introduced by Brezis [8] we say that: 

"T.X-+ Yis of'type (PKM) ifzk-^zin Xandlimsupk(Tzk9K(zk-z))^0 
imply that (Tz9 ^T(z-x))^lim inf& (Tzk9 K{zk-x)) for all x e X." 

We add in passing that a related class of the so-called mapping with 
pm-property has been studied in [119]. 

Using a somewhat complicated argument one shows that if Xis reflexive, 
K a weakly continuous mapping of X into 7* which is also uniformly 
continuous on closed bounded sets in X and ot-homogeneous for some 
oc^l with R(K) dense in Y*9 and T a bounded mapping of X into Y 
which is/tf-continuous and of type (PKM), then for such Tthe assertions 
(i) and (ii) hold. Hence, in view of (ii), Theorem 5.IB implies 

COROLLARY 5.IF. Suppose X is reflexive, K and Mn satisfy (3.1-2) 
and (3.1-4) respectively, and K satisfies the conditions just mentioned. If 
T is a bounded fa-continuous mapping ofX into Y which is of type (PKM), 
then the conclusions (El) and (E2) of Corollary 5.IE hold under the cor­
responding boundary or coerciveness condition on T. 

Let us add in passing that, as was shown in [121], the class of mappings 
introduced by Kachurovskii [61] and called in [61] quasi-K-monotone 
mappings is a subclass of those mappings which are pointwise pseudo-
v4-proper. We will not dwell on this subject here since it lies outside the 
scope of our review (see [121] for further discussion). 

(a4) Mappings of type (KM). Modifying the notion of a mapping of 
type (M) introduced by Brezis [8] we say that 

"71: X -* Y is said to be of type (KM) if for any sequence {zk} such that 
zk-^ z in X, Tzk —* g for some g in Y9 and lim supk(Tzk, Kzk) ^ 
(g9 Kz) we have Tz = g" 

Using the same conditions and arguments as in (a2) one shows that if 
T:X-+Y is a bounded /^-continuous map which is of type (KM), then 
for such Tthe assertions (i) and (ii) hold. Consequently, Theorem 5.IB 
implies 

COROLLARY 5.1G. Let X9 K and Mn satisfy all the conditions of Corol­
lary 5. IE. If T is a bounded fa-continuous mapping ofX into Y which is of 
type (KM), then the conclusions (El) and (E2) of Corollary 5.IE hold 
under the corresponding boundary or coerciveness condition on T. 

REMARK 5.1-2. It seems that the following observation concerning 
Theorem 5.1B and all of its corollaries is, perhaps, in order. The surjec-
tivity part of Theorem 5.IB and its corollaries provide the assurance that 
a certain operator maps onto Y. As was pointed out in [140] this, however, 
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is by no means true for every differential operator of interest to which the 
above abstract results are applicable. Although Theorem 5.IB and its 
corollaries give a condition (others will be given in §5.2) for an operator T 
to be onto, they also provide a condition for an element/of F to be in the 
range of Teven if Tis not onto. In some ways this is an interesting feature 
of Theorem 5.IB and all of its corollaries. This is particularly true since 
in many cases (see [121]) one can establish the pseudo-yi-properness of the 
above mappings without the condition that they be defined on all of X. 

5.2. Applications to fixed point and surjectivity theorems for G-operators, 
Pi-compact, weakly closed, and monotone type mappings. The preceding 
results are applied here to various classes of mappings T of D ̂  X into 
X* and to mappings T of D ç X into X by specifying Y, Yn, Qn, K and 
Mn as in Remark 3.1-3. 

A. Existence theorems for T:D^X-^X*. If X is a real Banach space 
with a shrinking Schauder basis {fà^X, then Vs={Xn,Pn; Xf

n,P*} 
determined by {<f>%) (see §1.1) is projectionally complete for (X, X*). 
By Remark 3.1-3, K=I and Mn(x)=2iLi (%x)®i satisfy all the con­
ditions used above. Consequently, for T:D^X->X*, Theorem 5.IB 
reduces to the following 

THEOREM 5.2A. Suppose X has a shrinking Schauder basis. 
(Al) If DaX is bounded and open with O e D , T:D-+X* pseudo-A-

proper and f e Y such that (Tx, x)^(f, x)for x e 3D, then there is x e D 
such that Tx=f 

(A2) If T:X-+X* is pseudo-A-proper and coercive, then equation (5.1) 
is solvable for each f e X*. 

For the case when Y=X* and K=I, the Â-monotone map becomes 
monotone, the map of type (PKM) reduces to pseudo-monotone, while 
the map of type (KM) becomes a map of type (M) in the sense of Brezis 
if sequences replace filters. It follows from (ii) in (a2) that every demi-
continuous monotone map is an ^a-continuous pseudo-^-proper map 
while, by (ii) of (a3) and (a4), every bounded pseudo-monotone map and 
every bounded map of type (M) is a bounded pseudo-^4-proper map which 
is also^a-continuous by the results of Brezis [8]. Consequently, as a corol­
lary of Theorem 5.2A (or special cases of Corollaries 5.ID to 5.1G) we 
obtain the basic existence and in some cases weakly constructive results for 
the four special classes of mappings. 

COROLLARY 5.2B. Let X be a reflexive Banach space with a Schauder 
basis and T a mapping ofX into X*. Then : 

(Bl) Suppose T is demicontinuous and monotone. If there exists a 
d>0 such that (Tx, x)^(f, x)for x e dB(0, d), then Tx=fhas a solution 
in Bfor each such f e X*. If T is coercive, then T is surjective. 
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(B2) If T is bounded and either pseudo-monotone or of type (M), then 
the conclusions #ƒ (Bl) hold under the corresponding boundary or coercive-
ness conditions on T. 

(B3) If T is weakly continuous, then the conclusions of (Bl) hold under 
the corresponding boundary or coerciveness conditions on T. 

Equation Tx=fis weakly approximation-solvable if it is uniquely solvable 
in any of the above cases. 

REMARK 5.2-1. The surjectivity part of assertion (Bl) has been ob­
tained independently by Browder [19] and Minty [90] and that of (B2) by 
Brezis [8]. Assertion (B3) was obtained by Shinbrot [140] for separable 
Hubert spaces (see also [57] for surjectivity part). The above authors 
used different methods and obtained their results for reflexive spaces not 
necessarily having Schauder bases. 

B. Existence theorems for T:D^ X->X. Let X be a real Banach II r 

space with X* strictly convex and let T0={Xn,Pn; Xn9Pn} be a projec-
tionally complete scheme for (X, X). By Remark 3.1-3, Mn=In and 
K=J satisfy the conditions (3.1-2) and (3.1-4) used in Theorem 5.1B. Hence 
the latter theorem implies the following 

THEOREM 5.2C. Let X be a Banach Hx-space with X* strictly convex. 
(CI) IfD^Xis bounded and open with 0 G D,T: D-^Xpseudo-A-proper 

and f e X such that (Tx, Jx)^(f Jx)for x e dD, then there is xe D such 
that Tx=f 

(C2) If T.X-+X is pseudo-A-proper and J-coercive, then equation (5.1) 
is solvable for each f e X. 

We note that if D is also convex and ƒ=(), then the assertion (CI) 
reduces to the fixed point theorem established by de Figueiredo [36] for 
G-operators since T=I—T is a (/-operator in the sense of [36] means 
essentially that T is pseudo->4-proper a t / = 0 and (Tx,Jx)^(x,Jx) for 
x G 3D if and only if (Tx, Jx)^0 for x e dD. 

Since T=I—T is A -proper and, in particular, pseudo-^4-proper when 
T is ^-compact, an immediate consequence of the assertion (CI) is the 
following corollary which, as will be indicated below, includes a number 
of classical and recent fixed point theorems. 

COROLLARY 5.2D. Suppose X satisfies the conditions of Theorem 5.2C. 
(Dl) If DaX is bounded and open with OeD and T.D-+X is Px-

compact, then T has a fixed point in D provided 

(5.2-1) (Tx, Jx) ^ (x, Jx) for x e dD. 

(D2) IfX is also reflexive and T: D-+X is a bounded, fa-continuous and 
a weakly closed map for which (5.2-1) holds, then T has a fixed point in D. 
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The above conclusion holds, in particular, if D=2?(0, r) and T(dB(0, /•))<= 
B(0, r). 

REMARK 5.2-2. Assertion (Dl) includes the fixed point theorem for 
P-compact mappings established by the writer [107], [108] and its ex­
tensions in [127] and, in particular, the fixed point theorem of Schauder 
[138] and Rothe [135] for T compact and of Kaniel [62] for T quasi-
compact. Since every ball-condensing mapping is also ^-compact, the 
fixed point theorem of Sadovsky [136] is also included. Assertion (D2) 
includes the fixed point theorem of Schauder [138] for T weakly continuous 
and D=B(0, r) and its extensions due to Altman [3] for D=B(0, r) 
and X=H (see also [140]) and to de Figueiredo [36] for D convex. 

If the duality mapping J:X-*X* is assumed to be both strongly and 
weakly continuous, then every /-monotone map of X into X is pseudo-
^4-proper and consequently from assertion (C2) of Theorem 5.2C we 
deduce as corollaries the surjectivity Theorems 1, 2 and 3 in Browder and 
de Figueiredo [22] for /-monotone and /-coercive mappings. 

It follows from Corollary 5.1 G for Y=X, that under the same conditions 
on / as in the /-monotone case one obtains a surjectivity theorem for 
an /a-continuous mapping of X into X which is /-coercive and of type 
(JM). An analogous surjectivity result holds for a map of type (PJM) 
provided that / is assumed to be also uniformly continuous on bounded 
sets in X. One can also obtain the existence of solutions for the equation 
Tx=feven when Tis not surjective provided that an element ƒ in X satis­
fies the inequality (Tx, Jx)^(f Jx) for all x e 92?(0, d) and some d>0. 

We complete this section with the following interesting corollary of 
Theorem 5.2C, where no condition is placed on the duality mapping/. 

COROLLARY 5.2E. Let Xbe a reflexive U^space with X* strictly convex 
and let T: X-*X be weakly continuous. 

(El) If feX and there exists d>0 such that (Tx9Jx)^(f9Jx) for 
x G dB(0, d), then equation Tx=fhas a solution in B(0, d). 

(E2) If T is J-coercive9 then T maps X onto X. 

Application of (B3) of Corollary 5.2B to nonlinear elliptic equations. 
To indicate the usefulness of assertion (B3) we consider the generalized 
BVP in W™(Q) for the quasi-linear equation 

(5.2-2) 2 ^ M * » «>Du>--, D^D'u] = ƒ (ƒ e LQ) 
\x\.\fi\<m 

which has been treated in [140] for the case when/?=2 (i.e. in the case of 
Hubert spaces). As in [140] we make the basic assumption: 

(A) The coefficients aaP are continuous functions of all their variables 
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and there exists a continuous function g such that for all a and (5 

\aaP(x, ii, DII, • • •, IT-HOI ^ g(\\u\\mJ a.e. in Q. 

Let F be a closed subspace of W™ such that W™ £ V and assume that 
(B) The linear imbedding of V into W™~x is compact. 
Now, condition (A) implies that the (nonlinear) form 

(5.2-3) a(u, v) = 2 Mx> ">"•> fl^HOD-ii, ^ > 
l«U*l<m 

is defined for all w, i; in F and it follows from results on Nemytskii opera­
tors (see [14], [81]) that the mapping T: V-^V* given by 

(5.2-4) a(u, v) = (Tu, v) (u, veV) 

is bounded and continuous. Following the usual terminology (see [14]) 
we define a weak solution of (5.2-2) corresponding to V as an element u 
in V such that 

(5.2-5) a(u, v) = (f v) for all v in V. 

Since to a given ƒ in Ltf there corresponds a unique wr in K* by (ƒ, u)= 
(wf, v) for all t; in V, we see that (5.2-5) is equivalent to the equation 

(5.2-6) Tu = wf (ue V, wf e V*). 

Equation (5.2-5) together with the restriction that u lies in V has the force 
not only of requiring that u should satisfy equation (5.2-2) (at least in a 
weak sense) but also of imposing boundary conditions upon u. The 
choices V=W% and V= W™ lead to the homogeneous Dirichlet and Neu­
mann problems for (5.2-2) respectively. Using conditions (A) and (B) and 
a variant of the argument used in [140], one shows that T: V-+V* defined 
by (5.2-4) is weakly continuous. Consequently, assertion (B3) of Corollary 
5.2B implies the validity of the following extension of Theorem 8 in [140]. 

THEOREM 5.2F. Suppose that conditions (A) and (B) are satisfied. If 
there exists d>0 such that a(u, u)^(f u) for u in V with \\u\\mfP=d, then 
(5.2-2) has a weak solution in 5(0, d) cz V. 

If there is a function c(r) ofR+ into R such that c(r)-+ oo as r—*oo and 

a(u, «) ^ c(\\u\\) Ml for all u in V, 

then (5.2-2) has a weak solution for each f e Lq. 

5.3. Equations involving uniform limits of A-proper type mappings. The 
following special case of Theorem 2 in [121] will illustrate the difference 
between the conditions and the proofs used in obtaining a surjectivity 
theorem for a non-Â-coercive uniform limit T:X-*Yof a certain sequence 
of pseudo-v4-proper or ^-proper mappings, respectively. 
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CONDITION (5.3++). If {xn}<^X is any bounded sequence such that 
Txn-+g for some g in Y, then there is an element x e X such that Tx=g. 

THEOREM 5.3A. Let (X, Y), T, K, and Mn satisfy the conditions of 
Theorem 5.IB. Let T:X-+Y be fa-continuous9 satisfy condition (5.3++) 
and suppose there exists a bounded fa-continuous map F\X->Y such that 
F is en-homogeneous for some a^l and 

(A 1 ) TM = T+ iiF is pseudo-A-proper for each \x > 0. 
(A2) {Fx,Kx)^\\x\\*\\Kx\\forallxeX. 
(A3) There exists c>0 such that (Tx, Kx)^—c\\Kx\\ for xeX. 
(A4) \\Tx\\^ooas\\x\\^oo. 

Then T(X)= Y. 

The proof of Theorem 5.3A consists in using (A2) and (A3) to show that 
to each ftk>0 (j*k-+0) and ƒ e Y there exists ^fc/>0 such that (T îpc), 
Kx)^(f, Kx) for x G 55(0, rHf). Hence, in view of (Al), Theorem 5.1B 
implies the existence of x* e 2?(0, r^) such that T(xk)+^{x^^fi In 
virtue of (A4), {xk} is bounded and so T(xk)^>f. Hence, by condition 
(5.3+ +), there exists xeX such that Tx=f 

Theorem 5.3A can be used (see [121]) to obtain a surjectivity theorem 
for T:X-+ Y satisfying (A4) for mappings discussed in (al)-(a4) of §5.1. 
Indeed, in (a2), (a3) and (a4) one shows in a simple way that in addition 
to (i), which implies the condition (5.3++) of Theorem 5.3A, the map 
T+fiF:X->Yis pseudo-̂ 4-proper for ^ satisfying suitable conditions. 

We restrict ourselves to the case when Y=X*, K=I, and F=J and to 
the case when Y= X, K=J, and F—I, where ƒ is a given duality mapping. 
Note that in some cases it is possible and more convenient to take linear 
mappings for K and F. 

COROLLARY 5.3B. Let X be a Banach space with a shrinking Schauder 
basis and with X* strictly convex. Let T: X-+X* be an fa-continuous map 
which satisfies condition (5.3+ +) and is such that 

(Bl) T^—T+fjJ is pseudo-A-proper for each /^>0. 
(B2) There exists c>0 such that {Tx, x)^—c\\x\\ for xeX. 
(B3) \\Tx\\-+oo as \\x\\-+oo. 
Then, T{X)=X*. 
An immediate consequence of Corollary 5.3B is the following corollary 

(see [121]). 

COROLLARY 5.3C. Let X be a reflexive Banach space with a Schauder 
basis and with X* strictly convex and let T:X^X* satisfy condition (B3) 

(CI) If T is hemicontinuous and monotone, then T(X)=X*. 
(C2) IfTis bounded, pseudo-monotone, and (B2) holds, then T(X)=X*. 
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(C3) If J is also weakly continuous and T bounded, of type (M) and (B2) 
holds, then T(X)=X*. 

REMARK 5.3-1. Assertion (CI) was essentially proved in [19]. Asser­
tions (C2) and (C3) were given in [121]. If, as in [37], we assume the exist­
ence of <x.:R+-+R+ with a(0-*oo as /-*oo such that \\T(x)-tT(-x)\\^ 
OL(\\X\\) for te [0,1] and ||x||^r for some r>0, then for t=0 we have 
|| Tx\\ ^oc(||JC||) for all x and so Theorem 2 in [37] follows from (CI) without 
the assumption that T is bounded or even continuous. 

Another corollary of Theorem 5.3A is the following for T:X-+X. 

COROLLARY 5.3D. Let Xbe a Banach U^space with X* strictly convex. 
Let T:X-+Xbe an fa-continuous mapping which satisfies condition (5.3+ +) 
and for which : 

(Dl) T^T+pI ispseudo-A-proper for each JU>0. 

(D2) There exists c^O such that (Tx, Jx)^—c\\Jx\\ for x e X. 
(D3) | | 7 J C | K O O ^ | | X | | - > O O . 
Then T(X)=X. 

To illustrate the use of Corollary 5.3D we state the following new result 
for /-monotone mappings. 

COROLLARY 5.3E. Let X satisfy the conditions of Corollary 5.3D and 
let J be both strongly and weakly continuous. If T.X-+X is J-monotone, 
demicontinuous and (D3) holds, then T(X)=X. 

Corollary 5.3E holds, in particular, when X=lv since /p*s have duality 
maps v, hich are strongly and weakly continuous. 

If in Theorem 5.3A it is assumed that T^T+pF is ^-proper for each 
/JL>0, then the recent surjectivity theorem of Fitzpatrick (see [41, Theorem 
1.1]) admits the following generalization to mappings T:X-+Y with the 
corresponding change in conditions (A3) and (A4) and for Banach spaces 
(X, Y) having a projectionally complete scheme I\ 

THEOREM 5.3F. Let (X9 Y), T, K and Mn satisfy the conditions of 
Theorem 5. IB. Let T:X-> Y be fa-continuous and satisfy condition (5.3 + +) 
and suppose there exists a bounded fa-continuous mapping F:X->Y such 
thai 

(Fl) T^T+pF is A-properfor each /*>(). 
(F2) (Fx, Kx)^0for all x in X. 
(F3) There exists r0>0 such that {Ax, Kx)^0for \\x\\ ^r0. 
(F4) T satisfies condition (3.1+) (i.e., if{xk}<^Xis such that T(xk)-+g 

for some g e Y then {xk} is bounded). 
Then T(X)= Y. 
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To indicate the proof (see [125] for details), note that to a given ƒ G Y 
there exist r>r0 and c>0 such that || Tx—tf || ^ c for t G [0, 1] and ||x|| =r. 
Since Fis bounded, we can choose f*0>0 s u ch that \\(T+jbtF)x—tfW^c/2 
for all t G [0, 1], fi G (0, ju0) and ||x|| =r. For any fixed fi G (0, ^0), (Fl) 
implies the existence of n^L\ and y>0 such that WQnTpX—tQnfW^y for 
a// ^ G A ^ with ||x||=r, n^n0, and r e [0, 1], The homotopy theorem 
applied to Ht(x)=tQnTfl(x)+(l-t)Mn(x) for xeBn(09 r) and t G [0, 1] 
for n^n0 shows that deg(//7, Bn(0, r), 0)5*0 for all t e [0, 1]. It follows 
from this and the ^t-properness of T^ that to each ju,k e (0, /*0) with pk->0 
there exist ^ G ^ ( 0 , r) such that T(xk)+[lyF&^f. Hence, T(xk)-+f as 
fc-^oo and so there exists X G I s u c h that r*=/ . 

It should be added that Theorems 5.3A and 5.3F are different although 
a number of surjectivity theorems for various special classes of mappings 
can be deduced from either one of them. 

In view of Theorem 5.3F, the fixed point theory for P-compact mappings, 
the generalized degree theory for uniform limits of ^4-proper mappings 
(see [16], [38]), and for other reasons (see [124]), it is important to find 
classes of mappings T: D ç A"—>- Y such that for a suitable choice of F: X-> Y 
the mapping T^T+pF is .4-proper with respect to a given scheme T. 
We mention here in historical order some of the classes for which the 
above has been shown to be true. 

In [108], [110] the author showed that if His a Hubert space and T: H-+H 
is monotone and either continuous or bounded and demicontinuous, then 
T^T+jLtlis ^4-proper for each / J > 0 . When Zis a Banach E^-space and 
S:X->X is oc-contractive with <x<l and T=I-S9 then T^T+nI is 
^4-proper for each / J > 0 . It follows from Theorem 2.3 in [115] that if 
X and X* are reflexive with property (H) and T: X-+X* is monotone and 
either continuous or bounded and demicontinuous, then T^—T+fiJ 
is ^-proper for /*>0, where J:X-+X* is any duality mapping. Moreover, 
if J is also weakly continuous and T:X->X is /-monotone, then TM= T+pI 
is ^4-proper for /*>0. Each of the above assertions remains true for the 
mapping T+C+juIor T+C+juJ when Cis compact. 

In [19] Browder showed that if A" is a separable reflexive Banach space 
with X and X* locally uniformly convex, / a normalized duality map, 
and T:X-+X* pseudo-monotone, then r | 4=7'+ JLJ satisfies condition 
(S+) for each /*>0 and hence A -proper if T is also bounded and demi­
continuous. 

In [12], [15] Browder initiated the study of intertwining mappings of 
semicontractive and semi-J-monotone type (see [34]) which became a 
subject of study by many authors (see [19], [42], [122] for references). 
Here we state the definition and mention only those results which are 
relevant to our problem. 
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DEFINITION 5.3G. Let X be a Banach space and T a mapping of X 
into X. 

(Gl) T is semi-J-monotone if there exists a V:XxX-+X such that 
T(x)= V(x, x) for xe X, V(-, x) is /-monotone and demicontinuous and 
V(x, •) is completely continuous for each fixed xeX. 

(G2) Tis strictly (weakly) semicontractive if V:Xx X-+Xis continuous 
and if, for each fixed xeX, V(-9x) is /-contractive with constant /<1 
(/=1) and V(x, •) is compact. 

It was shown by Edmunds and Webb [34] (see also [154]) that if X is 
a reflexive I^-space, X* strictly convex, J:X-*X* strongly and weakly 
continuous and TiX-^-X semi-/-monotone, then T^T+JLII is ^4-proper 
for each / J > 0 . In [155] Webb showed that if Tis strictly semicontractive, 
then T is ball-condensing while the author has shown in [122] that if T 
is strictly or weakly semicontractive, then T is /-ball-contractive with / ^ l 
depending on whether T is strictly or weakly semicontractive. 

Now, if A" is also a Ilj-space, L: X-*Xis 1-ball-contractive and r=7—Z,, 
then TH=T+JLII is ,4-proper for each //>0. 

Thus Theorem 5.3F is applicable to the above classes of mappings. 
As an example, we state the following corollary which can be used to 
deduce a number of results from [127], [157] obtained there by different 
and more complicated methods but for more general spaces. 

COROLLARY 5.3H. Let X be a Banach Ux-space and let L.X-+X be a 
ball-condensing mapping such that (Lx9 Jx)^(x, Jx) for ||jc||^r0 and some 
r0^0. IfT=I—L satisfies conditions (3.1+) and (5.3 + +) , then T(X)=*X. 

Extending the result of Browder [19] to T: A"-* F the author introduced 
in [119] the extension of the notion of pseudo-monotonicity in such a way 
as to be more in consonance with the concept of an A -proper mapping. 

DEFINITION 5.31. A continuous T:X-*Y is said to have the pm-
property if for any sequence {xn\xnjeXn^ for which xn^x and 
lim mp§(Txn—TPnfc9 K(xnj—Pnixj)^Q we have the relation 

(Tx, K(x - v)) <, limiùf(Txn, K(xnf - Pnv)) for each veX. 
i 

As a special case of Proposition 4.4 in [119] we can state that if X is 
reflexive, if K\X-+Y* is weakly continuous at 0 with Q*Kx=Kx for 
x e Xn, and if T: Jf-^Fhas the/>m-property, then T^T+JUF is ^-proper 
whenever F is a continuous iÊ-monotone mapping of X into Y which 
satisfies the modified condition (S). The ^4-properness of T+ju,F:X-+Y 
under different conditions on T and F was also obtained in [119]. Con­
sequently, Theorem 5.3F is valid for these classes of mappings r provided, 
of course, that T also satisfies conditions (F3) and (F4). 
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We complete this section by deducing from Theorem 5.3F the surjectivity 
theorem in [41] mentioned above. 

DEFINITION 5.3J. (Jl) T:X-+X* is called semimonotone if there exists 
V: Xx X-+X* such that T(x)= V(x, x) for xeX, V(x, •) is monotone and 
hemicontinuous and V(-, x) is completely continuous for each fixed 
xeX. 

(J2) T:X-+X* satisfies condition (P) if lim sup^Txj, x,—*)^0 when­
ever Xj-^x in X. 

The study of semimonotone mappings was initiated by Browder [11] 
and that of operators satisfying condition (P) by Hess [54]. It was shown 
by Fitzpatrick [41] that bounded pseudo-monotone mappings and semi­
monotone mappings are demicontinuous and satisfy condition (P). On 
the other hand, it was observed by Hess [54] that if Zis reflexive, A"and 
X* locally uniformly convex and T.X^-X* satisfies condition (P) then 
T^=T+jjJ satisfies condition (S+) and thus is ̂ t-proper for each jn>0 by 
the result of Browder [19]. Consequently, Theorem 5.3F implies the validity 
of the following corollary for (X, X*) having a projectionally complete 
scheme I \ . 

COROLLARY 5.3K. Let X be a reflexive Banach space and suppose 
T:X-+X* is demicontinuous and satisfies condition (P). Assume that T 
satisfies condition (5.3++) and that (Tx, x)^0for all ||jc||^r0 and some 
r0>0. If T satisfies condition (3.1+), then T(X)=X*. 

In its present form Corollary 5.3K was proved by Fitzpatrick [41] while 
some of its special cases had been established earlier by Browder [14], 
Brezis [8], and Rockafellar [134]. The above authors used different 
arguments and established their results for spaces which need not have 
projectionally complete schemes. We add that as has been noted in [125], 
Theorem 5.3F and its corollaries, including Corollary 5.3K, are in fact 
valid for separable spaces when the ^4-properness of a mapping is defined 
in terms of more general approximation schemes. 

5.4. Surjectivity theorems for odd limits of A-proper mappings. In this 
section we indicate how the surjectivity theorems of Pokhodjayev [130] 
and the author [115] for odd ^4-proper mappings have been extended to 
odd mappings which are uniform limits of A -proper mappings. 

The first result in this direction was obtained by Browder [19] for an odd, 
bounded, continuous pseudo-monotone mapping T.X-+X* by using the 
degree theory for ̂ -proper mappings developed in Browder and Petryshyn 
[24], [25]. The results of [130], [115], [19] were then further extended in 
various directions in [16], [38], [44], [54], [92], [119], [120], [127]. The 
recent result of Fitzpatrick [41] for T: X->X* satisfying conditions (3.1+) 
and (P) provides a further generalization of earlier results. 
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To discuss the recent surjectivity theorems for odd r : X - > 7 which are 
uniform limits of >4-proper maps we use the writer's approach from [115], 
[120] which is based on the direct use of A -proper mapping theory and not 
on the theory of generalized topological degree for maps in Banach spaces 
as used in [16], [19], [38], [119]. In fact, the approach used recently in 
[41] is similar to the technique used in [120]. As will be seen from its special 
cases, the following surjectivity theorem obtained by the writer in [120] 
(using Theorem 3.2D) appears to be the most general result for odd 
T: X—> Y which are uniform limits of ^4-proper maps, at least in the case 
when the Banach spaces (X, Y) have projectionally complete schemes T (or 
even when they are separable, [125]). It includes not only the earlier results 
from [16], [19], [38], [119] as was noted in [120] but, as will be seen below, 
it also includes the recent results from [121] and [41]. 

THEOREM 5.4A. Let T:X-+Y be fa-continuous, odd on X—B(0,x0) 
and let it satisfy condition (5.3 + +) . Suppose there is a sequence ofA-proper 
maps T3:X-+Ysuch that: 

(Al) Tj converges uniformly to T on each ball B(0, r). 
(A2) 7; is odd on X-B(0, r0)for each f 
(A3) To each f e Y there exist rf>r0 and Nf^l such that T^-tf^O 

for x G dB(0, rf), t e [0, 1] andj^Nf. 
ThenT(X)=Y. 

It turns out that when T:X-> Y satisfies condition (3.1+), then Theorem 
5.4A implies the validity of the following new result, which forms the basis 
for applications to special classes of mappings. 

THEOREM 5.4B. Let T:X->Y be fa-continuous, odd on X—B(0,r0) 
and satisfy condition (5.3+ +)• Suppose there exists a bounded fa-continuous 
mapping F:X-+Y such that F is odd on X—B(0, r0) and T^T+juF is 
A-proper for each /u>0. Then if T satisfies condition (3.1 + ) , T(X)= Y. 

PROOF. TO deduce Theorem 5.4B from Theorem 5.4A note that, 
since T satisfies condition (3.1 + ) , to each ƒ G 7 there exist r>r0 and c > 0 
such that (3.1-7) holds and, therefore, since F is bounded one finds /^0>0 
such that | | r M ( * ) - ( / ï | ^ / 2 for xedB(0,r), t e [0, 1] and {ie(0,ju0). 
Thus, if Fj=T+ fijF with ^ > 0 and fxr>0, then {FJ thus chosen satisfies 
(Al) to (A3) with rf=r and Nf such that {//,-} c: (0, //0) for j^Nf. Hence, 
T(X)= Y by Theorem 5.4A. Q.E.D. 

It is obvious that Theorem 5.4B is applicable to various classes of 
mappings T: X-> Y discussed at the end of §5.3 which have the property 
that TM= T+fiF is ^-proper for each / />0 for a suitable choice of F: X-* Y 
depending on Y, T and/or K:X-+Y*. Of course, it must be assumed that 
T and F are odd on ^—£(0, r0) and that T satisfies condition (3.1+) 
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or some stronger but more easily verifiable conditions. It is easy to check 
that condition (3.1+) is implied by any one of the following conditions: 

(# ) ||r*||-*oo as ||*||->oo {or T^(Q) is bounded whenever QczY is 
bounded). 

( # # ) 0 £clT(dB(0, r0)) and T(tx)=taTx for \\x\\7>r09 t>\ and some 
<x>0. 

In view of this, the corresponding surjectivity theorems of Browder 
[16], [19] for pseudo-monotone maps T:X-*X*9 Theorem 9 of the author 
[119] for T:X-+Y having the /wz-property and Proposition 2.7 of Fitz-
patrick [38] follow from Theorem 5.4B. Moreover, the writer's Theorem 
4 in [120] and all of its corollaries follow also from Theorem 5.4B. 

We complete this section by stating two corollaries of Theorem 5.4B 
for mappings T: X-^X* and T:X->X which have recently been extensively 
studied. 

COROLLARY 5.4C. Let (X, X*) be a reflexive couple with aprojectionally 
complete scheme V. Let T:X-^X* be a demicontinuous mapping which 
satisfies condition (P) and condition (5 .3++) and which is odd on X— 
5(0, r0). Then, if T satisfies condition (3.1+), T(X)=X*. 

Some special cases of Corollary 5.4C were obtained earlier as noted 
above, while in its present form it was proved in [41] without the assump­
tion that (X, X*) have a projectionally complete scheme. We add in 
passing that the arguments used to prove Theorem 5.4B and thus Corollary 
5.4C are also valid for separable spaces provided the ,4-properness of 
T is defined in terms of more general schemes. 

COROLLARY 5.4D. Let X be a Banach U^space with X* strictly convex 
and let T:X-+X be fa-continuous, odd on X—B(0, r0) and satisfy condition 
(5 .3++) . Suppose that T=T+pI is A-proper for each JU>0. Then, if T 
satisfies condition (3.1 + ) , T(X)=X. 

REMARK 5.4-1. The conditions of Corollary 5.4D are certainly satis­
fied if T is Pi-compact and, in particular, ball-condensing and satisfies 
condition (3.1+). The corollary also holds if T is 1-ball-contractive and 
satisfies conditions (5 .3++) and (3.1+). Hence Corollary 5.4D includes 
(for the narrower class of Banach spaces considered here) the correspond­
ing part of Theorem 1.1 in [127] and the various corollaries stated there. 
If X is also reflexive, X* has property (H) and a given duality mapping 
J:X->X* is weakly continuous, then Corollaries lb , 2b, and 3b in [120] 
follow from Corollary 5.4D. The semi-J-monotone mappings studied in 
[34] can also be studied by means of Corollary 5.4D. 

REMARK 5.4-2. In his Rutgers Ph.D. thesis under preparation P. 
Miloyevich extended the fixed point theorems of §1.2 and some surjectivity 
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theorems of Chapters 3 and 4 to multivalued P-compact and ^4-proper 
maps. 
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