RELATIVE COMPLETIONS OF A-SEGAL ALGEBRAS

BY JAMES T. BURNHAM

Communicated by Richard R. Goldberg, July 14, 1974

We announce some new results about multipliers and ideal theory of A-Segal algebras and their relative completions. Complete details are to appear elsewhere [3], [4]. The results about multipliers (Theorem 6) represent work done jointly with Richard R. Goldberg [4].

DEFINITIONS. If A is a Banach algebra, we say the subalgebra $B \subseteq A$ is an A-Segal algebra provided B is a dense left ideal of A, B is a Banach algebra with respect to a norm $\| \|_B$, the injection of B into A is continuous, and multiplication is (jointly) continuous on $A \times B$ into B. We shall always suppose that A does not have an identity.

The relative completion of B with respect to A, denoted \widetilde{B}^A , is defined by

$$\widetilde{B}^A = \bigcup_{n>0} \overline{S_B(\eta)}^A$$
,

where $S_B(\eta)=\{f\in B\,|\,\|f\|_B\leqslant\eta\}$ and \overline{E}^A is the A closure of E. For $f\in\widetilde{B}^A$ we define $\|\|f\|\|$ by

$$|||f||| = \inf \{\delta | f \in \overline{S_R(\delta)^A} \}.$$

THEOREM 1. If B is an A-Segal algebra, then \widetilde{B}^A (with norm $\|\| \|$) is an A-Segal algebra. Furthermore, if B has right approximate units which are bounded in the A-norm, then B is a closed left ideal of \widetilde{B}^A and the embedding of B into \widetilde{B}^A is isometric if the approximate units have A-norm one.

In case A and B share common right approximate units of A-norm one, then \widetilde{B}^A has a rather simple description which permits a straightforward proof of all of the assertions of Theorem 1. Such is the case when $A = L^1(G)$ and B is an ordinary Segal algebra [6, p. 16]. Indeed,

THEOREM 2. With A and B as in the preceding paragraph and U denoting (a set of) common right approximate units, we have

AMS (MOS) subject classifications (1970). Primary 46H10; Secondary 46H25, 44A15.

$$f \in \widetilde{B}^A \Leftrightarrow M \equiv \sup \{ \|u * f\|_B | u \in U \} < \infty,$$

and in this case |||f||| = M.

From here on we suppose that A and B have common right approximate units of A-norm one. The following theorem, which has the assertion of the second sentence in Theorem 1 as a consequence, is of independent interest.

Theorem 3.
$$S_B(\delta) = \overline{S_B(\delta)}^A \cap B$$
; in particular, if $B = \widetilde{B}^A$, then $S_B(\delta) = \overline{S_B(\delta)}^A$.

DEFINITION 4. We say B is singular provided $B \neq \widetilde{B}^A$.

Perhaps the simplest example of a singular A-Segal algebra and its relative completion is the pair $(C(G), L^{\infty}(G))$, where G is an infinite compact group and $A = L^1$. Additional examples of singular Segal algebras are given in [3] and [4]; a more detailed analysis of singularity is given in [3].

Some results which are useful for an analysis of multipliers and the ideal theory of A-Segal algebras and their relative completions are summarized in

THEOREM 5. (1) If B is a closed ideal in the A-Segal algebra B_1 , then $B_1 \subseteq \widetilde{B}^A$. Let U denote right approximate units for B. (2) If $f \in \widetilde{B}^A$, then $f \in B \Leftrightarrow$ given any $\epsilon > 0$ there exists $u(f, \epsilon) \equiv u \in U$ so that $\|uf - f\| \le \epsilon$. (3) $A\widetilde{B}^A \subseteq B$ and, hence, $\widetilde{B}^A \cdot \widetilde{B}^A \subseteq B$. We thus see that \widetilde{B}^A fails to factor if B is singular.

We now specialize to the case where $A=L^1(G)$, and B=S(G) is a symmetric Segal algebra as defined by H. Reiter [6, p. 17]. Here, G denotes a locally compact nondiscrete group. The (multiplier) algebra of bounded linear operators from $L^1(G)$ into S(G) $(\widetilde{S}^{L^1}(G))$ for which T(f*g)=f*Tg is denoted (L^1, S) $((L^1, \widetilde{S}^{L^1}))$.

THEOREM 6. Let $\langle e_{\alpha} \rangle$ be a bounded approximate identity for $L^1(G)$. For a measure $\mu \in M(G)$ the following three conditions are equivalent: (1) $\sup_{\alpha} \|e_{\alpha} * \mu\|_{S} < \infty$; (2) $\mu \in (L^1, S)$; (3) $\mu \in (L^1, \widetilde{S}^{L^1})$.

Furthermore, if $(L^1, S) \subseteq L^1(G)$, then (L^1, S) is isometrically isomorphic with \widetilde{S}^{L^1} .

For our final theorems we require that G be an infinite compact group. All unexplained notation may be identified from the analogous results in [5].

Theorem 7 [5, 38.9, p. 453]. Let S(G) be a singular Segal algebra. Let

P be any subset of Σ . Let F be a closed linear subspace of $\widetilde{S}^{L^1}(G)$ for which $F \cap S(G) = S_p(G)$ and $F \subset \widetilde{S}_p^{L^1}(G)$. Then F is a closed two-sided ideal in $\widetilde{S}^{L^1}(G)$; conversely, all closed two-sided ideals in $\widetilde{S}^{L^1}(G)$ have this form. Furthermore, the quotient algebra $\widetilde{S}^{L^1}(G)/S(G)$ is a zero algebra. The closed two-sided ideals in $\widetilde{S}^{L^1}(G)$ for which the quotient algebra is a zero algebra are exactly the closed linear subspaces of $\widetilde{S}^{L^1}(G)$ that contain S(G).

Theorem 8. Suppose S(G) is a singular Segal algebra. For each $\sigma \in \Sigma$, $\widetilde{S}_{\{\sigma\}}^{L^1}(G)$ is a regular maximal proper two-sided ideal in $\widetilde{S}^{L^1}(G)$. If M is a nonzero bounded linear functional on $\widetilde{S}^{L^1}(G)$ which vanishes on S(G), then $M^{-1}(0)$ is a closed maximal proper two-sided ideal in $\widetilde{S}^{L^1}(G)$ for which $\widetilde{S}_{\{\sigma\}}^{L^1}(G)/M^{-1}(0)$ is a 1-dimensional zero algebra. Every maximal closed proper two-sided ideal of $\widetilde{S}^{L^1}(G)$ not of the form $\widetilde{S}_{\{\sigma\}}^{L^1}(G)$ is obtained in this way.

For the ideal theory of A-Segal algebras with approximate identities, we refer to [1] and [2].

REFERENCES

- James T. Burnham, Closed ideals in subalgebras of Banach algebras. I, Proc. Amer. Math. Soc. 32 (1972), 551-555. MR 45 #4146.
- 2. ——, Closed ideals in subalgebras of Banach algebras, Monatsh. Math. 78 (1974), 1-3.
- 3. ———, The relative completion of an A-Segal algebra is closed, Proc. Amer. Math. Soc. (to appear).
- 4. James T. Burnham and Richard R. Goldberg, Multipliers of $L^{1}(G)$ into Segal algebras (to appear).
- 5. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups, Die Grundlehren der math. Wissenschaften, Band 152, Springer-Verlag, New York and Berlin, 1970. MR 41 #7378; erratum, 42, p. 1825.
- 6. Hans Reiter, L^1 -algebras and Segal algebras, Lecture Notes in Math., vol. 231, Springer-Verlag, Berlin and New York, 1971.

DEPARTMENT OF MATHEMATICS, OKLAHOMA STATE UNIVERSITY, STILLWATER, OKLAHOMA 74074