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Max Dehn first posed the word and conjugacy problems for groups, and 
solved these problems [2] for the fundamental group Gk for an orientable 
2-manifold of genus k. This group has the presentation 

Gk = (f*v bi>-', ak, bk;a-lbj1alb1 • • • a^lb^lakbk = 1). 

We note that Gk is a free product of two free groups with a cyclic amalgama­
tion generated by nonpowers. 

The author generalized Dehn's result [3] by solving the conjugacy prob­
lem for any free product of free groups with a cyclic amalgamation. On the 
other hand, Miller [5] gave an example of a free product of two free groups 
amalgamating finitely generated subgroups which has an unsolvable conjug­
acy problem. Thus a cyclic amalgamation seems an essential criteria in finding 
classes of groups with solvable conjugacy problems. (For notational convenience 
we will speak of a free product "amalgamating u and v" when we mean 
"amalgamating the cyclic subgroups generated by u and u".) 

Anshel and Stebe solved the conjugacy problem [1] for certain HNN 
extensions where the underlying group is free and the extension is obtained by 
an isomorphism of cyclic subgroups. Following Anshel and Stebe, we say that 
an element /i ina group G is non-self-conjugate if its distinct powers are in 
different conjugacy classes. We will also say that h is power-solvable if for 
any w in G we can decide whether or not w is a power of h. (A group 
has a solvable power problem if all its elements are power-solvable.) We note 
that every nonidentity element in a free group is non-self-conjugate and power-
solvable. 

We now are able to state our main result which clearly generalizes Dehn's 
result. 

AMS (MOS) subject classifications (1970). Primary 20F05; Secondary 20E05. 
Key words and phrases. Conjugacy problem, free product with amalgamation. 

Copyright © 1975, American Mathematical Society 

114 



THE CONJUGACY PROBLEM AND CYCLIC AMALGAMATIONS 115 

THEOREM 1. Let u be any nonpower in a free group A. Let v be 
a non-self-conjugate and power-solvable element in a group B with a solvable 
confugacy problem. Then the free product of A and B amalgamating u 
and v has a solvable conjugacy problem. 

The requirement that u be a nonpower in a free group A is actually 
stronger than needed. In order to concisely restate Theorem 1 in a more gen­
eral form, we introduce a definition. An element h in a group G will be 
called a critical element if it has the following four properties: 

(a) h is non-self-conjugate. 
(b) h is conjugate-power-solvable, i.e. for any w in G we can decide 

whether or not w is conjugate to a power of h. 
(c) h is double-coset-solvable9 i.e. for any pair u, v in G we can de­

cide whether or not there exist integers r and s such that hruhs = v. 
(d) If hmu = uhm, then u is a power of h. 

We will also say that h is semicritical if h satisfies the first three of the four 
properties. 

The author's main technical result in [3] shows that elements in free 
groups are double-coset-solvable. Such elements are clearly conjugate-power-
solvable. Nonpowers also satisfy property (d). Hence nonidentity elements in 
a free group are semicritical, and nonpowers are critical. Accordingly, the fol­
lowing two theorems generalize Theorem 1 and the main result in [3]. 

THEOREM 2. Let A and B be groups with solvable conjugacy prob­
lems. Let u be a critical element of A and let v be a non-self-conjugate 
and power-solvable element of B. Then the free product of A and B amal­
gamating u and v has a solvable conjugacy problem. 

THEOREM 3. Let G be the free product of groups with solvable conjug­
acy problem amalgamating a cyclic subgroup generated by semicritical elements 
in the factors. Then G has a solvable conjugacy problem. 

All relèvent terms appear in the text by Magnus, Karrass and Solitar [4]. 
Details and proofs of the above results will appear elsewhere. 
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