THE CONJUGACY PROBLEM AND CYCLIC AMALGAMATIONS

BY SEYMOUR LIPSCHUTZ

Communicated by Dock S. Rim, July 14, 1974

Max Dehn first posed the word and conjugacy problems for groups, and solved these problems [2] for the fundamental group G_k for an orientable 2-manifold of genus k. This group has the presentation

$$G_k = (a_1, b_1, \dots, a_k, b_k; a_1^{-1}b_1^{-1}a_1b_1 \dots a_k^{-1}b_k^{-1}a_kb_k = 1).$$

We note that G_k is a free product of two free groups with a cyclic amalgamation generated by nonpowers.

The author generalized Dehn's result [3] by solving the conjugacy problem for any free product of free groups with a cyclic amalgamation. On the other hand, Miller [5] gave an example of a free product of two free groups amalgamating finitely generated subgroups which has an unsolvable conjugacy problem. Thus a cyclic amalgamation seems an essential criteria in finding classes of groups with solvable conjugacy problems. (For notational convenience we will speak of a free product "amalgamating u and v" when we mean "amalgamating the cyclic subgroups generated by u and v".)

Anshel and Stebe solved the conjugacy problem [1] for certain HNN extensions where the underlying group is free and the extension is obtained by an isomorphism of cyclic subgroups. Following Anshel and Stebe, we say that an element h in a group G is non-self-conjugate if its distinct powers are in different conjugacy classes. We will also say that h is power-solvable if for any w in G we can decide whether or not w is a power of h. (A group has a solvable power problem if all its elements are power-solvable.) We note that every nonidentity element in a free group is non-self-conjugate and power-solvable.

We now are able to state our main result which clearly generalizes Dehn's result.

AMS (MOS) subject classifications (1970). Primary 20F05; Secondary 20E05.

Key words and phrases. Conjugacy problem, free product with amalgamation.

Copyright © 1975, American Mathematical Society

THEOREM 1. Let u be any nonpower in a free group A. Let v be a non-self-conjugate and power-solvable element in a group B with a solvable conjugacy problem. Then the free product of A and B amalgamating u and v has a solvable conjugacy problem.

The requirement that u be a nonpower in a free group A is actually stronger than needed. In order to concisely restate Theorem 1 in a more general form, we introduce a definition. An element h in a group G will be called a *critical* element if it has the following four properties:

- (a) h is non-self-conjugate.
- (b) h is conjugate-power-solvable, i.e. for any w in G we can decide whether or not w is conjugate to a power of h.
- (c) h is double-coset-solvable, i.e. for any pair u, v in G we can decide whether or not there exist integers r and s such that $h^r u h^s = v$.
- (d) If $h^m u = uh^m$, then u is a power of h. We will also say that h is *semicritical* if h satisfies the first three of the four properties.

The author's main technical result in [3] shows that elements in free groups are double-coset-solvable. Such elements are clearly conjugate-power-solvable. Nonpowers also satisfy property (d). Hence nonidentity elements in a free group are semicritical, and nonpowers are critical. Accordingly, the following two theorems generalize Theorem 1 and the main result in [3].

THEOREM 2. Let A and B be groups with solvable conjugacy problems. Let u be a critical element of A and let v be a non-self-conjugate and power-solvable element of B. Then the free product of A and B amalgamating u and v has a solvable conjugacy problem.

Theorem 3. Let G be the free product of groups with solvable conjugacy problem amalgamating a cyclic subgroup generated by semicritical elements in the factors. Then G has a solvable conjugacy problem.

All relevent terms appear in the text by Magnus, Karrass and Solitar [4]. Details and proofs of the above results will appear elsewhere.

REFERENCES

- 1. M. Anshel and P. Stebe, The solvability of the conjugacy problem for certain HNN groups, Bull. Amer. Math. Soc. 80 (1974), 266-269.
- 2. M. Dehn, Transformation der Kurven auf Zweiseitigen Flächen, Math. Ann. 72 (1912), 413-421.

- 3. S. Lipschutz, Generalization of Dehn's result on the conjugacy problem, Proc. Amer. Math. Soc. 17 (1966), 759-762. MR 33 #5706.
- 4. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Pure and Appl. Math., vol. 13, Interscience, New York, 1966. MR 34 #7617.
- 5. C. F. Miller III, On group-theoretic decision problems and their classifications, Ann. of Math. Studies, no. 68, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1971. MR 46 #9147.

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19122