A COMPLETE LOCAL FACTORIAL RING OF DIMENSION 4 WHICH IS NOT COHEN-MACAULAY

BY ROBERT M. FOSSUM AND PHILLIP A. GRIFFITH¹

Communicated by Hyman Bass, July 15, 1974

Samuel [7] stated that he knew of no factorial noetherian ring which was not Cohen-Macaulay. Murthy [6] showed that a geometric factorial ring which is Cohen-Macaulay is Gorenstein. Subsequently, Bertin [1] constructed an example of a factorial ring which was not Cohen-Macaulay. Hochster and Roberts [5] noticed that such examples abound and were found by Serre [9]. On the other hand, Raynaud, Boutot, and Hartshorne and Ogus [3] have shown that a complete local ring which is factorial, of dimension at most 4, and with C as residue class field is Cohen-Macaulay.

This note is to announce that the completion of Bertin's example (which is characteristic 2) is factorial. This defeats a conjecture suggested by Example 5.9 of Hochster [4] which states: If A is a complete noetherian domain, then some symbolic power of a prime ideal of height one is a maximal Cohen-Macaulay module.

Let k be a perfect field of characteristic p with $p \neq 0$. Let N operate on k^4 by $N(e_i) = e_{i+1}$ for $1 \leq i < 4$ and with $N(e_4) = 0$. Then I + N is an automorphism of k^4 of order p if $p \geq 5$ and of order 4 if p = 2. Let $B = k[X_1, X_2, X_3, X_4]$, which we consider to be the symmetric algebra on k^4 . Let G denote the group of automorphisms of B induced by I + N. It follows from Samuel [8] that the ring of invariants $A = B^G$ is factorial. If p = 2, then Bertin [1] has shown that A is not Cohen-Macaulay. Using a result in Serre [9], Hochster and Roberts [5] show that A is not Cohen-Macaulay if $p \geq 5$. Let $S = B_m$ and let $R = S^G$, where $m = (X_1, X_2, X_3, X_4)$. It follows that $R = A_n$ with $n = m \cap A$. The different D(S/R) = S, and therefore the cohomology group $H^1(G, G_m(S)) = 0$. Let \hat{S} denote the m-adic completion of B. The first result is almost obvious.

AMS (MOS) subject classifications (1970). Primary 13F15, 13H10.

¹This research was partially supported by the NSF.

PROPOSITION 1. The n-adic completion of R is the ring of G-invariants of \hat{S} . That is $\hat{R} = \hat{S}^G$.

This yields the following corollary.

COROLLARY 2. The ring \hat{R} is not Cohen-Macaulay.

Let $U_n = 1 + m^n S$ and $\hat{U}_n = 1 + m^n \hat{S}$. The U_n are subgroups of $G_m(S)$, and the following sequences are exact as G-modules:

$$1 \longrightarrow U_1 \longrightarrow G_m(S) \longrightarrow k^* \longrightarrow 1,$$
$$1 \longrightarrow U_{n+1} \longrightarrow U_n \longrightarrow m^n/m^{n+1} \longrightarrow 0$$

(and similarly with hats everywhere). Since G is cyclic, the cohomology of G is periodic of period 2 (cf. Cartan and Eilenberg [2]). We will study the exact sequence

and the corresponding one with hats. Note that the G-module m^n/m^{n+1} is the *n*th symmetric power of m/m^2 as a G-module.

PROPOSITION 3. The connecting homomorphisms $\hat{H}^0(G, m^n/m^{n+1}) \to H^1(G, U_{n+1})$ are zero for all n. Therefore the groups $H^1(G, U_n)$ are zero and the sequence

$$0 \longrightarrow H^1(G, \ \hat{U}_{n+1}) \longrightarrow H^1(G, \ \hat{U}_n) \longrightarrow \cdots$$
$$\longrightarrow H^2(G, \ \hat{U}_n) \longrightarrow H^2(G, \ m^n/m^{n+1}) \longrightarrow 0$$

is exact.

REMARK. The contragredient representation of G on the k-duals of m^n/m^{n+1} induces isomorphisms of k-vector spaces:

$$H^1(G, m^n/m^{n+1}) = H^2(G, (m^n/m^{n+1}))$$

To show that \hat{R} is factorial, it is sufficient, therefore, to show that the homomorphisms $H^1(G, \hat{U}_n) \longrightarrow H^1(G, m^n/m^{n+1})$ are zero for all n. In characteristic p=2, this is accomplished by directly calculating the groups $H^1(G, m^n/m^{n+1})$ and then showing that the connecting homomorphisms to $H^2(G, U_{n+1})$ are injections. Similar arguments should suffice in characteristic $p \ge 5$.

PROPOSITION 4. Suppose char k=2. If n is odd, then $H^1(G, m^n/m^{n+1})=0$. If n is even, then $\dim_k H^1(G, m^n/m^{n+1})=[n/4]+1$. If n=4k and $x=X_1(X_1+X_3)$ (which is just $X_1\cdot (I+N)^2(X_1)$), then a basis for $H^1(G, m^n/m^{n+1})$ is given by the classes of x^{2k} , $x^{2k-1}a(x)$, \cdots , $x^ka(x)^k$. A basis for $H^2(G, m^n/m^{n+1})$ is given by the classes of $(x+a(x))^{2k}$, $x^{2k-1}a(x)+xa(x)^{2k-1}$, \cdots , $x^ka(x)^k$, where a(x)=1: (I+N)(x) (and similarly for n=4k+2).

The results announced here, as well as similar ones for $\mathbb{Z}/p\mathbb{Z}$ acting on $k[[X_0, \dots, X_{n-1}]]$, will appear elsewhere.

REFERENCES

- M.-J. Bertin, Anneaux d'invariants d'anneaux de polynômes, in caracteristique p,
 R. Acad. Sci. Paris 264 (1967), 653-656.
- 2. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040.
- 3. R. Hartshorne and A. Ogus, On the factoriality of local rings of small embedding codimension Communications in Algebra 1 (1974), 415-437.
- 4. M. Hochster, Cohen-Macaulay modules, Conf. on Commutative Algebra, Lecture Notes in Math., vol. 311, Springer-Verlag, Berlin and New York, 1973, pp. 120-152.
- 5. M. Hochster and J. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Advances in Math. 13 (1974), 115-175.
- M. P. Murthy, A note on factorial rings, Arch. Math. 15 (1964), 418-420.
 MR 30 #3905.
- 7. P. Samuel, On unique factorization domains, Illinois J. Math. 5 (1961), 1-17. MR 22 #12121.
- 8. ——, Classes de diviseurs et dérivées logarithmiques, Topology 3 (1964), suppl. 1, 81-96. MR 29 #3490.
- 9. J.-P. Serre, Sur la topologie des variétés algébriques en caractéristique p, Internat. Sympos. on Algebraic Topology, Universidad Nacional Autónoma de México and UNESCO, México City, 1958, pp. 24-53. MR 20 #4559.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, ILLINOIS 61801