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Introduction. Let K be a simple ring with identity and let A be a har­
monic ^-algebra with identity, where neither K nor A is assumed to be 
commutative. If one denotes the set of maximal ideals in A by Max(^4), 
then A is strongly semisimple iff S(A) = C\MGMBX(A) M = (0). We assume 
that A is strongly semisimple and note that this implies that A is Jacobson 
semisimple. One may equip Max(.4) with the hull-kernel topology, and we 
denote this space by max(^4) = (Max(yl), r). We index Max(4) by the 
points of max(/l); viz., if p G max(^l) then M E Max(/1) is the ideal 
corresponding to p. Since A is harmonic, the space max (/I) is a locally 
compact Hausdorff space [8] and, as usual, since A has an identity, max(yl) 
is compact. Teleman [8] has also shown that there exists a plastic, semisimple 
sheaf of local algebras such that A = H°(m2ix(A), A), where H°(max(A), A) 
is the jK-algebra of global sections of A. More generally, if B is a strongly 
semisimple harmonic ring, then B is isomorphic to a subring of //°(max(Z?), B). 
However, this representation is too general for the applications we have in 
mind, as the elements of A may take values in different simple rings. In addi­
tion, one of the characteristic features of the representation of rings by sec­
tions is that the topology of the base space can be extremely unmanageable 
[4]. In this note, we state sufficient conditions under which we are able to 
extract from Teleman's representation a second representation of A as a ring 
of A -̂valued functions on a homogeneous, locally compact Hausdorff base 
space. It is obvious that, under mild restrictions, these conditions are also 
necessary. 

RESULTS. We denote the group of AT-algebra automorphisms of A by 
Autg04). 
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DEFINITION 1. If M C Max(4) we say that A is M-transitive, pro­
vided whenever Mp, M EM there exists 0 E AutK(A) with (M )0 = Mq. 

DEFINITION 2. M E Max(^4) will be called geometric, provided A/M 
= K; the set of geometric ideals is denoted by i&(A). 

Those ideals M E Max (/I) - i$(A) will be called hypergeometric, and 
the set of these ideals is denoted by $fr(A). We denote the space (($C4), r|($(/l)) 
by F(A) and its complement in max(/l) by A(yl). If F C max(^4) then 
the set 

A0(F)= {f e A\supp(f) C F} 

is an ideal in A [8]. The ideal A0(<3(A)) will be denoted simply by A0. 

DEFINITION 3. X C Max (/I) is said to be algebraically dense if when­
ever ƒ E A and f £ Mp, for all Mp E Xy then ƒ is invertible in A. 

Since A is harmonic, we have 

THEOREM I. If X is algebraically dense, then its corresponding point 

set is dense in max (/I). 

DEFINITION 4. If X C Max(/1), then A is said to be X semisimple 

iff H M p e x Mp = (0). 

Let /(yl) denote the Jacobson radical of A; one has 

LEMMA 1. If f G A is such that 1 - f g is a right unit for all g E A, 

then fej(A). 

COROLLARY I. If X is algebraically dense then A is X semisimple. 

We have defined a decomposition of Max(^4) 

Max(.4) = ($(A) U §OQ. 

Now by definition, A0 C C\M e ^ ( ^ ) Mp9 and hence &(A) C h(A0); h(A0) 

being the hull or locus of the ideal A0. We shall say that A is A"-compact 

if §(A) = h(A0). 

DEFINITION 5. A is geometrically homogeneous iff 
(i) A is ($(/l)-transitive; 

(ii) (&(A) is algebraically dense; 
(iii) A0 * (0). 

THEOREM 2 (THE DECOMPOSITION THEOREM). If A is geometrically 

homogeneous then A is K-compact. 
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As an ideal in a harmonic A"-algebra, A0 is a harmonic ^-algebra. 

COROLLARY 2. If A is geometrically homogeneous then T(A) = 

max(^40) and, hence, is locally compact Hausdorff. 

COROLLARY 3. The maximal spectrum of A may be decomposed as 

follows 

max 04) = T04) U A(>1), 

where T(A) is a locally compact dense subspace and A(A) is its closed com­

plement. In fact, A0 is the smallest ideal in A having T(A) as its colocus. 

By Corollary 1, we have a faithful representation of A as a subdirect 
product t: A —> T\P<ET(A) A/Mp. We denote the image of A under L by 
A and, similarly, the image of ƒ in il by ƒ. Now, this representation of 
A yields the isomorphisms 

A = H°(T(A)9 A), A0 £* H°(T(A)9 A). 

As in the introduction, we also have a representation A0 = HQ(F(A), A0). 
Since T(A) is locally compact, and since the sheaf A0 is plastic, a 

sheaf theoretic argument will prove 

THEOREM 3. If A is geometrically homogeneous, then A is isomorphic 

to H°(T(A), A0). 

DEFINITION 6. An automorphism of F(A) is a bijection of sets, 
$: T(A) —• F(A), satisfying the following property: ƒ E i iff ƒ o <ï> e A. 

The set of all such maps, denoted by Aut(T(/l)), is clearly a group. 
The action of Aut (T(A)) on 1X4) is to be computed "on the left." We 
have a map 17: Aut (T(A)) —> AutK(A) defined as follows: if <ï> G Aut(T(A)) 

then 0 = r?(<Ê>) is the correspondence ( / )0 = ƒ o $ induced by ƒ —» ƒ o <ï>. 
In fact, we are able to prove 

THEOREM 4. Aut (T(A)) is canonically isomorphic to AutK(A). 

One may also show 

COROLLARY 4. Aut(T(A)) C H6m(T(i4)), where Hom(T(^)) is the 
group of homeomorphisms of T(A). 

THEOREM 5. If A is geometrically homogeneous then A is isomorphic 

to the algebra of global sections in a plastic, semisimple sheaf A0 over a 

homogeneous, locally compact Hausdorff base space, T(A). Moreover, A may 
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be realized as an algebra of K-valued functions on V(A). 

EXAMPLE. Let K = R and let A be an algebra of continuous, real-
valued functions on X, a homogeneous, locally compact Hausdorff space. 
Under mild conditions on A it is known that max(^4) = (IX and, further, 
that the algebra A0 determines X [5], [7]. One notes also that the condi­
tion of R-compactness reduces to that of realcompactness, introduced by 
Hewitt in [3]. In particular, if X is a smooth manifold and A = C°°(X), 

then Teleman has shown that max(^l) = (ÏX [9]. Moreover, Bkouche has 
shown that X is realcompact relative to C°°(X), i.e. r(C°°(Z)) a X [1]. 
This result may also be obtained from Theorem 5 and the result announced by 
Shanks in [7], thus the techniques developed by the author enable one to 
determine the fixed ideals in A in a completely algebraic fashion. Pursell has 
also given an algebraic characterization of fixed ideals in concrete function 
rings in [6] by a different technique which requires a priori knowledge of the 
underlying space. More generally, Theorem 5 enables one to consider, in an 
applicable way, certain abstract harmonic algebras as function algebras. In fact, 
the author uses this theorem to characterize algebras of smooth functions de­
fined on arbitrary smooth manifolds in [2]. 

REMARK. Definition 3, in the commutative setting, is due to Bkouche, 
who originally called such a subset "very dense" (op.cit.). In more recent work 
Bkouche has used the term "r-dense", probably in order to avoid confusion 
with the current terminology employed by Grothendieck and Dieudonne. 
Proofs and a more detailed discussion will appear elsewhere. 
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