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This is a summary of results, to be published in full elsewhere, which 
strengthen and refine the statements made in a previous announcement [1]. 

A compact Riemann surface with nodes of (arithmetic) genus p > 1 is 
a connected complex space S, on which there are k = k(S) > 0 points 
P j , • • • , Pk> called nodes, such that (i) every node P. has a neighborhood 
isomorphic to the analytic set {ZjZ2 = 0, \zt\ < 1, |z2 | < 1}, with Py cor­
responding to (0, 0); (ii) the set S\{Pl9 • • • , Pk] has r > 1 components 
S x , • • • , S r , called parts of S, each 2,. is a Riemann surface of some genus 
pi9 compact except for n( punctures, with 3pt - 3 + nt > 0, and n1 + 
• • • + nr = 2k\ and (iii) we have 

P = (pl-l) + ---+(pr - l ) + * + l . 

Condition (ii) implies that every part carries a Poincaré metric, and con­
dition (iii) is equivalent to the requirement that the total Poincaré area of S 

be 4ir(p - 1). 

From now on p is kept fixed and the letter S, with or without sub­
scripts or superscripts, always denotes a surface with properties (i)—(iii). If 
k(S) = 0, S is called nonsingular; if k(S) = 3p - 3, S is called terminal. 

A continuous surjection ƒ: S' —> S is called a deformation if for every 
node P G S, f~1(P) is either a node or a Jordan curve avoiding all nodes and, 
for every part X of S, / _ 1 | 2 ) is an orientation preserving homeomorphism. 
Two deformations, ƒ: S' —> S and #: S" —• S are called equivalent if there 
are homeomorphisms <p: S' —• 5" and \p: S —> S9 homotopic to an iso­
morphism and to the identity, respectively, such that g ° </? = \p ° f. The 
deformation space D(S) consists of all equivalence classes \f\ of deforma­
tions onto S. To every node PG S belongs a distinguished subset consisting 
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of all [ƒ] eD(S) with r\P) a node of r\S). 
We define a Hausdorff topology on D(S) as follows. If c is a closed 

curve on a part of 5, denote by \c\ the length of the unique geodesic freely 
homotopic to S. Let C be a finite set of closed curves on parts of S, e a 
positive number, and co: S' —> S a deformation. We say that co is (C, e) 
sra#// if for every Jordan curve c on a part of S' such that co(c') is a node, 
\c\ < e, and for every c G C, I loT V ) | - |c| | < e. A set A C £>(S) is 
called open if, for every [ƒ] G ^4, there is a finite set C of closed curves 
on parts of f~~l(S), and a number 6 > 0, such that whenever CJ: *S' —> 

f-l(S) is (C, e) small, [ / ° c o ] G A 

THEOREM 1. /^(S) zs a cell. There is an {essentially canonical) homeo-

morphism of D(S) onto C3p~3 which takes each distinguished subset onto 

a coordinate hyperplane. 

A deformation h: S —• S0 induces a mapping h^\ D(S) ~-> D(SQ), 

called an allowable mapping, which takes each [ƒ] G D(S) into [h ° ƒ ] . 

THEOREM 2. Le^ S and SQ have the same genus, awe/ to &(S0) = 
k(S) 4- /. ƒƒ / = 0, *w allowable mapping D(S) —> D(S0) is a homeomorphic 

bijection. If / > 0, an allowable mapping D(S) —• D(S0) is a universal 

covering of the complement of I distinguished subsets. 

The proofs of Theorems 1 and 2 use the so-called Fenchel-Nielsen co­
ordinates (cf. [1, p. 51]). An inequality for Fenchel-Nielsen coordinates 
stated in [1] as Theorem XV (and previously conjectured by Mumford) implies 

THEOREM 3. Let Slf • • • , Sm be all not isomorphic terminal surfaces 

of genus p. There are compact sets Kj C D(Sj),j = 1, • • • , m, such that 

every S is of the form S = f~1(S^)) [f] G Kp for some f. 

If S is nonsingular, D(S) can be identified with the Teichmiiller space 
T of closed Riemann surfaces of genus p. For every S, each point in 
D(S), not belonging to a distinguished subset, has a neighborhood which can 
be naturally identified with a neighborhood in T . Thus an open dense set 
in D(S) is a complex manifold. It follows that D(S) has the structure of 
a ringed space. 

THEOREM 4. D(S) is a complex manifold which can be realized as a 

bounded domain in C3p~"3. The distinguished subsets of D(S) are nonsingular 

analytic hypersurfaces which meet transversally. 
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The proof utilizes the Kleinian groups constructed in [1, pp. 46—47]. 
The spaces Xa(S) used there are finite ramified coverings of D(S). The 
following statement is almost obvious. 

THEOREM 5. Allowable mappings are holomorphic. 

Let Y(S) be the group of allowable self-mappings of D(S) induced by all 
topological orientation preserving self-mappings of S, and let T0(5) be the 
subgroup induced by the automorphisms (conformai self-mappings) of S. 

Note that if y([f]) = [g] for some y G F(S), then f~1(S) is isomorphic 
to g~1(S). The converse statement is, in general, false. 

THEOREM 6. The group F(S) is discrete, the subgroup Y0(S) is finite 

and is the stabilizer of [id] E D(S) in V(S). 

Let Mp denote the moduli space (Riemann space) for genus p9 that 
is, the set of all isomorphism classes [S] of Riemann surfaces with nodes, 
of genus p. We define a Hausdorff topology in M by calling a set B C M 
open if, for every [S] G B, there is a finite set C of closed curves on parts 
of S, and an e > 0, such that [S']& B whenever there is a (C, e) small 
deformation S' —> S. The moduli space of nonsingular Riemann surfaces of 
genus p is known to be a complex space, and is an open dense subset of 
Mp. Hence M has the structure of a ringed space. 

There is a canonical mapping D(S) —> Mp which sends [ƒ] G D(S) 
into [rl(S)]. 

THEOREM 7. The canonical mapping D(S) —> Mp is holomorphic. 

Furthermore, [id] G D(S) has a neighborhood N, stable under r o(5) , 

such that N/T0(S) is isomorphic to a neighborhood of [S] in Mp. 

Theorems 3 and 7 imply the known (cf. [2] ) 

COROLLARY (MAYER-MUMFORD). M is a compact normal complex 

space (and a V-manifold). 

A regular q-differential on S is defined by assigning a holomorphic 
form F L of type (q9 0) to each part S of S', the F E should be either 
regular at the punctures, or have there poles of order not exceeding q, the 
"residues" at two punctures joined in a node being equal (if q is even) or 
opposite (if q is odd). The number &(p, q) of linearly independent regular 
^-differentials is p if q = 1, (2q - l)(p - 1) if q > 1. If we choose ô = 
8(p, q) linearly independent ^-differentials, their "values" at every point of 
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S, including a node, are the homogeneous coordinates of a point in Y8_l. 

In this way one obtains a holomorphic mapping S —• P6 __ x, the so-called 
q-canonical mapping. This is an embedding for q > 2 and, in some cases, 
also for q — 2 and q — 1. 

THEOREM 8. For every S and every q > 1, there is an analytic hyper-

surface o C D(S), with [id] & a, 0«d a holomorphic mapping <ï> o/ D(S)\o 

into the Chow variety of curves of degree 2q(p - 1) in ^s(pfq)-i suc^ that> 

for [f] G D(S)\o9 $([ƒ] ) is the Chow point of a q-canonical image of f~l(S). 

The proof uses the Poincaré series described in [1, pp. 48—49]. If S 

is nonsingular, one knows, from other considerations, that the result is true 
with o=0. For singular S, I could thus far obtain that a = 0 only 
for q = 1. 
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