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ABSTRACT. There are 26 distinct indecomposable self-dual codes of 

length 24 over GF(2), including unique codes of minimum weights 8 and 6, 

whose groups are, respectively, the Mathieu group M24 and the maximal sub

group of index 1771 in M^> For each code we give the order of its group, 

the number of equivalent codes, and its weight distribution. 

1. Introduction. An [n, k] code C is a ^-dimensional subspace of 
the vector space of all «-tuples of O's and l's with mod 2 addition. The 
dual code C 1 = {u: u • v = 0 for all v G C} is an [n, n - k] code. C 

is self-orthogonal if C C C1 , self-dual if C — C1. Self-dual codes exist when
ever the length n is even. The weight of a vector is the number of its non
zero components, and the minimum weight of C is the minimum weight of 
any nonzero codeword. The weight distribution of C is the set {a0, otl9 

• • • , 0Ln}9 where af is the number of codewords of weight I 

The group G(C) of a code C is the set of all permutations of the 
coordinates which send C into itself set-wise. Two codes are equivalent if 
there is a coordinate permutation sending one into the other. The number of 
codes equivalent to C is «!/order of G(C). The direct sum of codes C' 
and C", written C' 0 C", is {(w, v): u GC',v e C"}. If C = C' 0 C", 
where C' and C" are nonzero, then C is decomposable. Otherwise C is 
indecomposable. 

Pless [4] classified all self-dual codes of length < 20, Conway 
(unpublished) found the 9 self-dual codes of length 24 in which the weight 
of every codeword is a multiple of 4, and Niemeier [2] found the 24 even 
unimodular lattices in dimension 24, 9 of which correspond to the codes 
found by Conway. 
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We have found that there are 8 inequivalent, indecomposable self-dual 
codes of length 22, and 26 of length 24. The latter are shown in Table I, 
which gives for each code a basis, the order of its group, the number of codes 
equivalent to it (written as a multiple of v = 1 • 3 • 5 • 7 • . . . • 23 = 316, 
234, 143, 225), and the weight distribution a4 , a6,* • • , a12 (omitting a0 

— 1, a2 = aodd = 0, at = a24-z f° r * > 12). Full details of the enumera
tion will appear in [5]. 

2. Self-orthogonal codes of minimum weight 4. Table I was obtained by 
classifying the codes according to minimum weight. A self-dual code of mini
mum weight 2 is decomposable. For minimum weight 4 we use 

THEOREM 1. Let C be an indecomposable self-orthogonal code gener

ated by codewords of weight 4. Then C is one of the codes dn (n = 4, 
6, 8, • • •), e7, or Es, generated by the rows of the following matrices: 

" t i l l 
1 1 1 1 

1 ' i L 

, 
I i I i 

I I i I 
i i i i 

£8 : 
1 1 1 1 

1 1 1 1 
1 1 1 1 

1 1 1 1 

Furthermore a self-dual code containing Es as a subcode is decomposable. 

Let C be an indecomposable self-dual code of length 24, and let Cr 

be the subcode generated by codewords of weight 4. By Theorem 1, C' has 
the form d„ © • • • © d„ © en © • • • © en. We considered all such C' 

and all ways of extending C to a self-dual code. For each code we com
puted the order of its group. In this way all the codes of minimum weight 4 
were obtained. 

The notation used to specify the basis vectors is best illustrated by an 
example. The code / 2 4 generated by the rows of (1) 
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where a = 101010... 10, b = 110000.. .00, c = 111 . . . 1, is written d%e2
n 
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4- 2/bcol0/boc0l/ao2l2, where the + 2 indicates two coordinates which do 
not meet any codeword of weight 4. a' denotes a 4- b = 011010... 10. 
We omit the full details of W24, X24, Y24. 

3. Minimum weight 6 and 8. It is known [3], [1] that the [24, 1.2] 
Golay code is the unique code of minimum weight 8, and that its group is the 
Mathieu group M24. 

We determined that there is a unique self-dual code of minimum weight 6, 
which is generated (in Todd's [6] notation) by the set of 64 nonspecial hexads 
associated with any set of 6 mutually complementary tetrads in the Golay code. 
Its group is a maximal subgroup of index 1771 in M24. 

TABLE I 

Indecomposable Self-Dual Codes of Length 24 (Page 1) 

{Generator Matrix 
Order of Group Number * v a4 <*6 a8 a10 a12 

( d2Jab/ba 
A24 j ( 2 5 \ ' 2 . 2 1,848 30 0 639 0 2756 

^fXnP.i 18'102f 24 ° 663 ° 2 7 2° 

c^)'%tTa 46'200 18 ° 687 ° 2684 

^ )d*(a)/baao/obaa/aoba/aaob 
2 4 j(22 • 3!)44! ' 4 0 ° l2 0 711 0 2648 

2 4 (2 1 1 - 1 2 2 66 0 495 0 2972 

\ d%(a)/boa3o/oboa3 /aoboa2 /a2oboa/a3obo/oa3ob 
2 4 (46 • 6!3 221,760 6 0 735 0 2612 

„ \ Golay code rt 21 
C M J 2 » . 3 » . 5 . 7 . 1 1 . 2 3 M 1 3 2 3 ° ° 759 ° 2576 

H U%dï6lablba 
2 4 J23 • 4!27 • 8! 1,980 34 64 239 960 1500 

!
d.dod^/b3/a2o/oa2 

2 * 2 ! 2 3 - 4 ! 2 » - 6 ! 1 1 0 ' 8 8 ° 2 2 6 4 2 8 ? % 0 M 2 8 
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TABLE I 

Indecomposable Self-Dual Codes of Length 24 (Page 2) 

Î Generator Matrix 
Order of Group Number -f v a4 <x6 a8 ax 

\d8e
2 + 2/bcol0/boc01/ao2l2 (see (1)) 

2 4 (2 3 • 4!1682 • 2 181,028^ 20 64 295 960 1416 

!
d6dl0e1 + l/b2cl/oao\labol 

22 • 3!24 • 51168 253,440 20 64 295 960 1416 

\d3(b)/b3/a2o/oa2 

^24 | (2 3 • 4!)3 • 3! 46,200 18 64 303 960 1404 

M \dl(c)la3/ba'o/boa' 
2 4 | ( 2 3 • 4!)3 • 2 138,600 18 64 303 960 1404 

\d\dXQ + 2lb3\l/oa2nlabo01lbao\0 
2 4 j(22 • 3!)224 • 5'2 887,040 16 64 311 960 1392 

Î
d ld \/ab2o/boao/oboa/baob 

(2 • 2')2(23 • 4!)2 • 2 1,663,200 14 64 319 960 1380 

\d4dle1 + \/ob2c\/ab2o0loaa'o0/boaol 
2 4 (2 • 2!(22 • 3!)2168 • 2 2,534,400 14 64 319 960 1380 

!
d^(b)faoao/boa2 joaoajobaa 

(22 • 3!)4 • 8 739,200 12 64 327 960 1368 

\d2
6d8 +4/b2ol4/bobl202/o2a0l20/ao2013/oao\30 

2 4 ((22 • 3!)223 • 4! • 2 8,870,400 12 64 327 960 1368 

2 4 (2 • 2!(22 • 3!)3 • 2 17,740,800 10 64 335 960 1356 

4. General enumeration theorems. The following theorems, and others, 
were used to check Table I. 

THEOREM 2. Let OLC(X) = SJLQ atx
l be the weight enumerator of C. 

Then 
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z occ(X) = " j n V + o • p 2 - ^ + x
n) + L (")*'j, 

where the sum extends over all self-dual codes C of even length n. 

THEOREM 3. If n is even, the number of self-dual codes with length n 
and minimum weight > 4 is 

nil (— \\iy.\ n/2-i- l 

£6 2H\(n - 20! A i 

TABLE I 

Indecomposable Self Dual Codes of Length 24 (Page 3) 

~ - /Generator Matrix VT , 
Code <_ , . _ Number v i> a* aA aR a i n a \Order of Group 4 " 6 w 8 "10 "12 

rfjâf 8 /babab/ba 2 oa/oab 2a'/aoba2/b2 oaa ' '4 a8. 
* 2 4 | 4 4 • 23 • 4! • 8 4,989,600 10 64 335 960 1356 

\d\d\ + 4lob2ol202/oa2o03llobob02l2/oaoa0l02/b2o214 /a2o21010 
2 4 (42(22 • 3!)2 • 4 53,222,400 8 64 343 960 1344 

[dl(b)lbabo3/obabo2/o2babo/o3bab/bo3ba/abo3b 
2 4 \46 • 6 • 8 9,979,200 6 64 351 960 1332 

(43 • 22 • 3! • 3! • 2 106,444,800 6 64 351 960 1332 

d\ + 8/- • • 

4 4 • 4! • 2 159,667,200 4 64 359 960 1320 

Y )d2 + l6-o/- • • 
** 2 u - 3 2 106,444,800 2 64 367 960 1308 

z |see §3 
24 | 2 l 0 . 33 . 5 14,192,640 0 64 375 960 1296 

Total: 556,041,557 - ~ • v 
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