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This announcement computes the Wall surgery obstruction groups of 
amalgamated free products of finitely presented groups by using the new 
UNil functors introduced below. Special cases of these results [C4] were 
obtained as consequences of the splitting theorems of [C3]. The present 
results use the general results on manifold decomposition outlined in 
[C7]. Further applications to the study of manifolds and submanifolds, 
Poincaré duality spaces, diffeomorphism groups, and Novikov's con­
jecture [C8] will be presented elsewhere. 

1. UNil of bimodules with involution. Let R be a ring with unit and 
involution. Let M be an P-bimodule with involution; i.e. M is equipped 
with a homomorphism x->x satisfying x=x9 (ax/3)~=/5xa, xeM, 
a, ]8 e R. Call M hyperbolic if there is a decomposition of P-bimodules 
M=N®N9 N*={x\xeN<^M}. 

By a (— l)fc Hermitian form over M we mean a triple (P, X9 ju) where P 
is a finitely generated free right P-module and À:PxP-+M9 JU:P-> 

M/{x— (— l)kx\x e M} satisfy: 
(i) for x G P fixed, y—>X(x9 y) is an P-homomorphism P->M; 

(ii) X(x9 J O = ( - 1 ) * ( A O , x))"", y e P ; 
(iii) A(x, *)=/*(*)+(-1)*(M*)) in M9xeP; 
(iv) /Jt(x+y)^/i(x)+^(y)+À(x9y), x,y eP; 
(v) //(xa)=5c//(x)a, x e P , a G P. 

Let Mx and M2 be P-bimodules with involution which are free left 
P-modules. A (resp; simple) (— l)k UNil form over (Ml9 M2) is C = 
(Pl9 Al9 iix\ P2, A2, /u,2) withP2=P* and (Pi9 Xi9 /^) a (— l)k Hermitian form 
over Mi9 / = 1 , 2, for which there exist finite filtrations of P-modules 

P 2 = pg 3 p j => P2
2 3 . . . 3 p « = 0 

so that, letting px=Pï-+P2 ^RMX denote the adjoint of Xx and p2:P2-> 
P3 <g>RM2 denote the adjoint of A2, 

P l(P|) c P ^ 1 ® R Ml9 P2(Pi) <= Pl+1 ® B Ma, Î ^ 0 
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(resp; and (Pl9 P2;pl9 />2) represents the zero element in the group of 
nilpotent objects (Ni\(R; Ml9 M2)) defined in [Wl]). Set -C=(P1, 
—Ax, — ̂ i ;P 2 > — A2, —^2)- Call C a (resp; simple) kernel if there are 
free summands V{ of Pi9 / = 1 , 2 , with V2<^P2=P* the annihilator of 
FjCiPj, and with (At-|Kt-x Ft) and (/^|J^) zero, i=l,2 (resp; and also for 
pi'P\\Vx-+P2\V2 ®RMl9 P2:P2IV2-^P1IV1 ®RM29 the induced maps, 
(A/^i> A/^2; /°i> P2) represents zero in (Nil(P; Ml9 M2))). Note that 
C(B(—C) is a (resp; simple) kernel. 

Introduce among the (resp; simple) (—l)fc UNil forms over (Ml9 M2) 
the equivalence relation generated by Ar^B if A®(—B) is a (resp; simple) 
kernel. The equivalence classes form under the direct sum operation an 
abelian group denoted UNil^OR; Ml9 M2) (resp; UNil2fc(P; Ml9 M2)). 
Give R[t, t~x] the involution (x^)~~=xY~% x e R9 and similarly introduce 
involutions on Mt ®RR[t, r - 1 ] . Now define 

U N i l * ^ * ; Ml9M2) 

= U N i l ^ [ r , r 1 ] ; M, ® BK[f, r 1 ] , M2 0 B *[* , r ^ / U N i l ^ P ; M1? M2). 

If R is a regular ring, or even just coherent of finite global homological 
dimension, define 

UNil i^C*; Ml9 M2) = U N i l ^ U ; Ml9 M2). 

Note the semiperiodicity UNil*(P; Ml9 M2)^UNil*+ 2(P; Aff, M2)9 x=s 
or h, where M J is Mi equipped with the involution x->—-x .̂ 

2. Surgery groups of free products with amalgamation. Let i?cA1 } 

jRc: A2, be inclusions of rings with identity and involution. Assume A^ 
has an P-bimodule with involution decomposition Ai=RÇBÂi9 &t a 
free left P-module. A (—l)k UNil form (Pl9 Xl9 fix\ P29 X29 /u2) over 
(A1? Â2) determines a (— l)k Hermitian form (P, X9 /u) over the free product 
with amalgamation ring Ax * R A2 with P=(P1^P2) 0 ^ (Ax *^ A2) 
and with, 

A(x, y) = (x, y) for x 6 P 2 J e ^ i (recall P2 = Pf), 

A(x, y) = A/x, y) for x9 y e Pi9 i = 1, 2, 

(2) ^(x) = /^(x) for x e P i 5 * = 1, 2. 

This construction induces for all « a homomorphism UNil^(P; A; A2)-> 
L£(Ai *^ A2), the Wall surgery group of Kx *R A2. 

THEOREM 1. (i) The image of UNil£(JR; Â, A2)->Lh
n(A.1 *R A2) is 

2-primary. 
(ii) jyAi and A2 are hyperbolic, or if 2 is invertible in R9 the image of 

UNil£(P; Al9 A2) in Lh
n(A1 *R A2) is zero. 
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Theorem 1 is proved algebraically by adapting the proof of [C3, 
Lemma 11.10] and of Remark 2 at the end of [C3, §2]. 

In the remainder of this paper, R is a ring with Z^R^Q. The groups 
/ / , Gl9 G2 are finitely presented, H<^GX and H^G2. Moreover, Gx and 
G2 are assumed equipped with homomorphisms œi:Gi-+Z2={±.l}, with 
(0)^11)=(co2\H); as usual, these determine the involution on JR[GJ with 
g=0)(g)g-i ^geG^R [G J , / = 1, 2. Let R [G J denote the R [H] subbimodule 
with involution of JR[GJ additively generated by g e {Gt—H}. 

THEOREM 2. The homomorphism UNil£(JR[#]; R[GX], R[G2])-> 
L\{R[G1 *H G2]) is a split monomorphism. 

The splitting </> of this homomorphism is defined as follows. Realize 
x G LKRIGi *H G2]), using [W2] for R=Z and [CS] for general R^Q, 
by a normal cobordism of 1 F t o / : W-+Y, F a closed (n— l)-dimensional 
manifold, n^.6, with TT1(Y)=G1 *H G2, ƒ an iMiomotopy equivalence. 
Then from [C7], define </>(x) to be the splitting obstruction for ƒ along 
l e Y, where TT1X=H. Thus the action of / ^ ( Z ^ *# G2]) on ^ A ( 7 ) , 
the set of A-cobordism classes of manifolds equipped with a homotopy 
equivalence to 7, restricts to a free action of UNil£(Z[Jï]; Z [ ( J J , Z[G2]) 
o n ^ * ( y ) . 

COROLLARY 3. UNil£CR[//]; ^ [ ^ J , R[G2]) is a 2-primary group. If 
J e R, it is zero. 

Call a subgroup T̂ of a group / square-root closed if g2 G K implies 
g e K for g G J [C3]. For example, if K is normal in / , K is square-root 
closed in / if and only if JjK has no elements of order 2. Any subgroup of 
a finite group of odd order is square-root closed. I f / / i s square-root closed 
in Gl9 Z[G]J is a hyperbolic Z[//]-bimodule with involution, hence: 

COROLLARY 4. If H is square-root closed in Gx and G2, 

VmiKRimiRlG^RlG,]) 
is zero. 

Thus, many results of [C3] can be obtained from [C7] using Theorem 
l(ii). From the general splitting obstruction theory of [C7] we get: 

THEOREM 5. (i) For $ the quadrad of rings 

l Ï 

L£(0) = UNili(2?[tf]; K[GJ, R[Ô2]) 

© Hn~\Z2; Ker(K0(R[H]) -* K^Rfo]) © K0(R[G,])))-



1120 S. E. CAPPELL [November 

(ii) Let 

L%R[GX * H G2]) 

= CoKer(UNil£(#[H]; R[Gxl R[G2]) -> L^R^ *H G2])). 
Then if 

H\ZZ; Ker(K0(R[H]) -> K^GJ) © K0(R[G2]))) = 0, i ^ 1, 

there is a long exact sequence 

• • • - Lh
n(R[H]) -> Lh

n(R[GL]) © Lh
n(R[G2]) 

- IMG, *H G2]) -* LUiRtf]) -> • • • 

COROLLARY 6. 7%ere w a /ö«g exact sequence for x=h or for x=s, 

• • — L*(tf [H ]) ® Z[|] - ( L ^ R t G J ) © Ll(R[G2])) ® Z[i) 

-*LÎ(*[GX * H G,]) ® Zffl-^Lt-aCHtflD ® Z[« - • • • 
COROLLARY 7. ƒƒ 

fl'(Z, ; Ker(K0(i?[tf]) ->• ̂ ( ^ [ G J ) © *o(l?[GJ))) = 0, j ^ 1, 

OHÉ? if %e R or H square-root closed in Gt and G2, there is a long exact 
sequence 

• • • - Ll(R[H}) - Lh
n(R[GJ) © Lj(K[GJ) 

- L ^ R ^ *H G2]) - Lt_i(H[H]) - • • • 

Let ^ 0 denote the smallest set of groups satisfying: 
(i) 0e%; 

(ii) if H, Gl9 G2 e &0, with HaGi9 z = l, 2, then Gx *# G2 G ^ 0 ; 
(iii) if H,Je@0 and f̂  : / / -> / , ƒ = 1 , 2 , are monomorphisms, then 

J * H {*} G ^ 0 , where 

J * H {*} = z * Jl{tSi(x)r%(x)~l | x G H, t the generator of Z}. 

From (iii), if if G ^ 0 , then Z x if G 0 O . More generally, if A, Be &09 then 
AxBe@0. @0 contains all torsion free finitely-generated one-relator groups 
and all fundamental groups of irreducible sufficiently large 3-manifolds. 

Using [C2], [C4], a special case of the following result was proved in 
[Q]. From Corollary 3 we get 

COROLLARY 8. Let Ls
n(G) denote the Wall surgery obstruction group 

for the simple homotopy equivalence problem for oriented manifolds with 
fundamental group G.IfGs ^ 0 , 

Un{G) ® Zffl s KOn(K(G, 1)) ® Z m 



1974] UNITARY NILPOTENT GROUPS AND HERMITIAN ^-THEORY. I 1121 

and 
Ls

n(G)®Qç*®Hn+u(G;Q). 
ieZ 

This implies for a much larger set of groups than @0, Novikov's conjecture 
on homotopy invariance of the higher signatures [C8]. 

Problem. Let -n be the group of a locally flat knot SX<^S*\ does the 
abelianization homomorphism 7T->Z induce an isomorphism of Wall 
groups [CI]? The present results show that L*(7r)=Z4(Z)0(a 2-primary 
group). For TT the group of a fibered knot, this 2-primary group is zero 
[C4]. 

3. Applications to Wall groups of free products. For O ^ m ^ oo, 
/ = 0 , ± 1 , R(m_l9m0,m1) denotes the free jR-module on generators 
xu y39

 zk> 0< /^m_ 1 , 0< j^2m 0 , 0<k^ml9 with involution determined 
by Xi=-xi9 zk=zk, y%^y^_x. If G is a group with co:G-^Z2={±l} 
determining the involution on R[G], then R[G]^R(m__l9 ra0, m^, where 
ra0 is \ the number of g e G with g2 7*1, mi is the number of g e G satis-
fy ingg 2 =l ,g=^l , œ(g)=i, for f = ± l . 

PROPOSITION 9. For R a ring with Z^R^Q: 

(0 
UNilftK; R(a, 6, c), R(d, e J)) ^ UNiltf*; «(a, 6, c), fl(d, e, f)) 

^ UNil*+2(#; *(c, ft, a\ R(f9 e9 d)) 

is 2-primary (2-torsion) for n odd (even). 
(ii) If % e R, or n odd and m_ 1 +m 1 +ml 1 +mi=0 , or n=2k and 

w(__1)fc+i+W(/_1)fc+i=0, then 

UNil£(JR; R(m_l9 w0, m^, jRCm^, m£, mj)) = 0. 

(iii) If n=2k9 \$R> m^Dk+i+m^Dk+i^O, m^+mç+m^O and 
mL.i+m'o+m'xTéQ, then 

UNil£(K; R(m_l9 m0, mx\ R(mLl9 mi m[)) ^ 0 Z2. 
00 

Let Ls
n(G) denote the reduced surgery group, so that Ls

n(G)=Ls
n(G)® 

Ln(0). The following extends results of [L], [C2], [C3], [C4], [C6]. 

THEOREM 10. Let G1 and G2 be finitely presented groups. Then 

K(G1 * Ga) ^ LW(0) e Dn(G1) © Ls
n(G2) © A , 
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where A is 
(i) for n~4k, zero; 
(ii) forn=4k+1 or 4k+3, zero ifGx and G2 have no elements of order 2, 

and otherwise a 2-primary group, 
(iii) for n=4k+2, zero if and only ifG1=09 or G 2=0 or Gx and G2 have 

no elements of order 2; otherwise it is a vector space over Z2 of infinite 
rank. 
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