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Let k be any nonarchimedean locally compact field, with (say) q elements 
in its residue field. Let G be a simple, semisimple algebraic group defined 
over k, G the group of its A>rational points on G. Let / be the fc-rank of 
G. Suppose T to be a discrete subgroup of G such that V\G is compact, 
and V a finite-dimensional vector space over C on which T has a unitary 
representation. In [4], Garland has proven that there exists an integer 
q(l) (depending only on /) such that if q>q(l) then Hm(T9 V)=0 for 
ra^O, /. Garland's proof is an analogue of the proofs of vanishing theorems 
for discrete subgroups of real groups, applying a sort of curvature on the 
Bruhat-Tits complex of G. By an apparently entirely different method, I 
have been able to remove the residue field restriction and thus to prove 

THEOREM 1. One has Hm(T, V)=0for m^O, /. 

The proof involves the continuous cohomology and the theory of admis­
sible representations of G. Let me show how these enter into consideration. 

First of all, one may assume G to be simply connected (see Lemma 3.4 
in [1]). Let 

/ F = Ind(F | r ,G) 

be the space of all locally constant functions ƒ:G-*V such that f(yg)= 
7'fig) for all y G T, g G G. The group G acts on this by right translation: 
Rgf(x)=f(xg). With this action, since T\G is compact, the space Iv is 
that of an admissible representation of G, i.e., every element in this space 
is fixed by some compact open subgroup of G, and for any compact open 
subgroup K, the space J ^ = { / G 7F|#(/c)/=/for all keK} has finite 
dimension. Since F is a unitary T-module and there exists a G-invariant 
measure on T\G, the representation of G on Iv is unitary as well. Admis­
sibility and unitarity together of Iv imply easily that it is G-isomorphic to a 
direct sum 0 In of irreducible, admissible, unitary G-spaces, each iso­
morphism class occurring with finite multiplicity. 
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It follows, then, from [3, Proposition 3 and Corollary 3 to Theorem 2] 
that 

H*(T, V) s if*ont(G, ly) ^ 0 H*ont(G, 7J , 

where H*0Ilt means continuous cohomology. (Any admissible representa­
tion is continuous with respect to the discrete topology on the vector space, 
and that is the topology implied here.) One, therefore, comes to the ques­
tion: for which irreducible unitary admissible G-representation spaces I 
i s7f* o n t (^ , / )^0? 

Let P0 be (the À>rational points of) a minimal parabolic subgroup of 
G, A 0 a maximal split torus in P0, A the corresponding set of simple posi­
tive roots. For each subset O ç A , let PQ be the corresponding standard 
parabolic subgroup (so that P0 is named correctly, and PA=G). For 
every such 0 , let TTQ be the right regular representation of G on the 
space 

VQ = C™(P@\G) = {locally constant ƒ : PQ\G -> C}. 

This defines an admissible representation of G. For 0 c f i , one has 
7rQ^7re. Define aQ to be the representation of G on UQ = V&I^Q^ÇÎ V&. 
Thus, cA is the trivial representation of G, and a0 is the Steinberg repre­
sentation of G (see [2]). 

THEOREM 2. (a) Each aQ is an irreducible representation. 
(b) For each 0 , 

#cWont(G, F0) = 0 if m 3 é | A - © | , 

^ C if m = |A — ©|. 

(c) If V is the space of any irreducible admissible representation of G, 
then H*ont(G, V)=0 unless V is G-isomorphic to one of the VQ. 

(d) The only representations as which are unitary are a 0 and aA. 

I shall not even sketch the proof of this theorem, which is difficult and 
involves a great deal of the theory of admissible representations of G. 
It is part (d) which is subtle; this was first proved by A. Borel by methods 
quite similar to Garland's proof of Theorem l, but under a similar residue 
field restriction! (See [1, §2.1].) 

From Theorem 2 to Theorem 1 is a simple step. It follows from (a), 
(b), (c), and earlier remarks that 

Hm(T,V)^ 0 Hom o (F 0 > / F ) . 
\Q\=l-m 

But since Iv is unitary, (d) implies that Hom G (F 0 , Iv)=0 unless 0 = 0 
or A. And for the case 0 = 0 , one obtains a result complementary to but 
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more elementary than Theorem 1 (known already to Garland, and proved 
independently by Borel and Serre) : 

THEOREM 3. If G is simply connected, then Hl(T, V)^HomG(V0, Iv). 

Now assume {A:J to be a finite set of nonarchimedean local fields. 
For each i9 let Gt be a simple, semisimple algebraic group defined over 
ki, let lt be the fcrrank of Gi9 and let Ĝ  be the group of A:rrational points 
of Gt. Let G be Yl &i> ^ = 2 4 > F a discrete subgroup of G such that 
(i) T\G is compact, and (ii) the projection of T onto each factor G£= 
Ylj^i Gj is dense. Let F be a finite-dimensional unitary T-module. 

THEOREM 4. One has Hm(T, V)=0 unless ra=0, /. 

This was first proved by Borel (see [1, §6.5]), again under a residue 
field restriction for each factor. Of course, one may generalize it slightly 
to include the case, for example, where G is any semisimple group over 
a single field. The proof of this result again depends on Theorem 2, and 
follows closely that of Theorem 1. One needs along the way three ele­
mentary results. 

LEMMA 1. Any irreducible admissible representation IT of Yl Gi ^ a 

tensor product ® rri of irreducible admissible representations of the factors 

LEMMA 2. Ifir^^ir^sa tensor product of irreducible representations 
ofG, one of which is trivial, then Homr(7r, V)=0 unless n^C. 

LEMMA 3. If rr is an irreducible representation of G such that 
Hom^TT, IV)T*0, then Homr(7r, V)^0. 

Let me point out that (1) the results of this paper for the vanishing of 
one-dimensional cohomology were originally proved by Kazhdan in 
[5], who also used the representation theory for G, but in a rather dif­
ferent way; and (2) the vanishing theorems were originally conjectured 
by Serre in [6]. I would like to raise the point that Serre's conjecture 
actually involved representations of T on A>vector spaces, inherited from 
a rational representation of G. A number of cases of this are also covered 
by the above results (see [4, §9]), but for both Garland's techniques and 
mine the assumption of complex coefficients, and of unitarity, is crucial. 
A reasonable theory of infinite-dimensional /?-adic representations of a 
p-adic group does not yet exist, for example. 

One interesting question is to what extent one can pursue the methods 
suggested here for discrete subgroups of real Lie groups. It may not be a 
reasonable task, because one knows already in this case that the (r0's 
of Theorem 2 generally have no simple parallel. 
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I would finally like to mention that Garland himself, according to a 
conversation in February, 1974, has been able to remove the residue field 
restriction in a large number of cases, by a refinement of the calculations 
in [4]. 
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