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1. Introduction. In On the mathematical foundations of electrical 
circuit theory, Smale [S.l] proposes the following two problems. 

Problem 1.1. What can one say about the dynamical systems which are 
gradient systems with respect to a nondegenerate indefinite metric, say on 
a compact manifold. 

Problem 1.2. Can one always regularize the equations of (1.6) [S.l], 
by adding arbitrarily small inductors and capacitors to the circuit ap­
propriately? How? By regularizing we mean obtaining new equations 
which have the property TT-.^-^^X^' is a local diffeomorphism. 

Furthermore he makes the following conjecture 
CONJECTURE 1.3. Suppose Z=grad(co) is the gradient of a closed 1-

form with respect to a Riemannian metric on a compact manifold M. 
Suppose further that co is not cohomologous to zero and that X is well 
behaved in the sense that it satisfies the conditions of [S.2, (2.2)]. Then X 
has a closed orbit, not a point, which is aymptotically stable (i.e. a sink). 

In this work we give a counterexample to this conjecture. Furthermore 
we reformulate it, solving the new version in the case dimAf=2. For 
Problem 1.1 we obtain generic properties for the generalized gradient 
fields as in the Kupka-Smale theorem. Moreover we characterize structural 
stability for these types of vector fields in the case Mis compact, orient-
able, and dim=2. For Problem 1.2 we give a counterexample in the 
general case and solve the problem imposing conditions on the resistors 
of the circuit. 

Before we state the theorems we need some definitions and notations. 
M will be a C00 manifold (with or without boundary), TM®TM= 
{(p, v, w)\p eM9v,we TMP}. 

DEFINITION 1.4. A metric Cr on M is a Cr map JU:TM®TM-+R, such 
that for each p e M, the map JU,P:TM1)XTMP-+R given by juv(v, w)= 
ju(p,v,w)is bilinear symmetric. We say that /u is a nondegenerate metric 
on M if for each/? e M, JUV is a nondegenerate bilinear form on TMP. 
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NOTATIONS 1.5. AltT(M) is the set of Cr, 1-forms on M and Xr(M) is 
the set of Cr vector fields on M. Here we will consider Alr(M) and 
Xr(M) endowed with the Whitney Cr topology. J r r (M) will denote the set 
of closed Cr 1-forms on M and | r (M) the set of exact Cr 1-forms on M. 

We remark that |r(M)<= ^r{M) are closed linear subspaces of A1,r(M). 
DEFINITION 1.6. Let /u be a nondegenerate metric on M and oo e A1>r(M). 

We say that X e Xr(M) is the gradient of oo with respect to /u if for each 
p e M and v e TMp we have 

(1.6.1) /*,(X(J>), v) = c o » . 

In this case we denote X=gmd^(oo). It is not difficult to show that the 
equality (1.6.1) defines a unique Cr vector field on M and that the map 
grad^:A1,r(M)->3Er(Af) is an isomorphism of topological vector spaces. 

NOTATIONS 1.7. In this section we fix a nondegenerate metric ju, on M. 
1.7.1. J^(M)=grad M (J^(M)) is the set of vector fields XeXr(M), 

such that Z=gradM(co), co e ^r(M). 
1.7.2. i ; (M)=grad , ( r (M)) . 
1.7.3. Let M-S(Xr(M)) be the set of Morse-Smale vector fields 

on M (cf. [P.3]). If Jf^Xr(M), then J^nM-S(Xr(M)) is denoted by 
M-S(jy 

1.7.4. Let @i23(Xr(M)) be the set of Kupka-Smale vector fields on M 
(cf. [P.l]). If J^czXr(Ml then JTr\ &12z(Xr(M)) is denoted by ^ 1 2 3 ( ^ ) . 

1.7.5. We say that a closed C1 curve y:[a, b]-+M is transversal to 
co e J^ r(M) if for each t e [a, b]9 ojy{t)(y'(t))y*0. 

Now we can state the results concerning Conjecture 1.3 and Problems 
1.1, 1.2. 

PROPOSITION 1.8. Let œ e ^r(M). Then there exists a Riemannian 
metric /u, such that grad^co) has a closed orbit which is an attractor if and 
only if co admits a closed transversal. 

THEOREM A. Let M be a C00 compact, orientable, 2-dimensional mani­
fold, dM=0 and M?£S2. Then the set of closed l-forms which admit a 
closed transversal is open and dense in lFr{M). 

SKETCH OF THE PROOF. We note that only density offers some difficulty. 
The idea of the proof is to show that co G J r r (M 2 ) can be approached by a 
1-form œ G !Fr{M), such that there is a leaf y of the foliation induced by 
oo on M2 which is nontrivially recurrent. Thus oo admits a closed trans­
versal. We note that the perturbation of oo cannot be made locally, and 
in fact it is made in a tubular neighborhood of a closed curve on M2 which 
intersects some leaf of oo transversally in a unique point. 
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We note that it is not difficult to construct an open set of closed 1-forms 
on S2 X S1 which do not admit a closed transversal (note that | r ( S 2 X S1)^ 
^r(S2xS1)). 

A natural question is: For which manifolds M is the set of closed 1-
forms which admit a closed transversal dense? We conjecture that a 
sufficient condition for dim M^.3 is HX{M\ R)^0 and 7Tn_1(M)=0. 

For Problem 1.1 we have the following results: 

THEOREM B. Let M be a C00 manifold. Then ^ ( ^ ( A f ) ) [^i23(f £(M))] 
is residual in ^^(M) [^(M)] (ju is a fixed nondegenerate metric on M). 

SKETCH OF THE PROOF. The idea is to use a technique introduced by 
Abraham in [A-R, §§31, 32, 33]. We note that such techniques cannot be 
applied crudely to the problem when we are restricted to #^(Af). The 
following example shows the main difficulty. 

Let Q = {(t9 x) e R2\(t)<tl, | x | ^ l } and p be the metric on R2 whose 
quadratic form is Idtdx. Given f:R2->R we have grad^(<^)==(3//dy, 
df/dx). Consider the Banach space 

N = {rj G r ( * 2 ) | flip) = 0mp$Q}. 

Let f R2-+R be given by f(t, x)=x and co=df Then grad^(co) = ( 1, 0). 
Let JVi be the open set of N, defined by 

# i = in e N | g r a d > + rj) = (Yl9 Y2) with Y,(p) > J V P e Q). 

Let 2i={0> x) e Q\t=\) and F:AV->2i be defined by F(rj)=the point 
where the orbit of grad^(co + ^) , by the point (—1, 0), intersects S].. Then 
Fis C1. To use Abraham's techniques it is essential that F be a submersion. 
In this example .Fis not a submersion at rj=0. 

This difficulty is overcome by restricting the analysis to an open and 
dense subset r of J ^ M ) . Then we show that ^ m C ^ O ^ O ) is residual in r. 

THEOREM C. Let M be a C00, compact manifold with dM=0. Let p 
be a Riemannian metric on M. Then M— 5(|^(M)) is dense in !£(M). 

Since the Morse-Smale vector fields are structurally stable (cf. [P-S]), 
it follows from Theorem C and minor arguments that the set of structurally 
stable vector fields in f J(M) is M-S^M)). 

Smale [S.3] proves a weaker form of Theorem C. There he perturbs both 
the metric p and the 1-form a)=df 

THEOREM D. Let M be a C00 compact, orientable, 2-dimensional mani­
fold with dM=0. Let p be a nondegenerate metric on M. Then 
M-Si^iM)) [M-S(^(M))] is dense in ^(M) [^(M)]. 
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The idea of the proof is to use the techniques developed by Peixoto in 
[P.2]. 

In §2 we give an example which shows that the answer to Problem 1.2, 
in the general case, is no. However we have the following result: 

THEOREM E. Let G be a circuit which satisfies: 
(a) The projection iL x vc : K->^ x c€' (cf. [S.l, p. 4]) is surjective. 
(b) If p is a resistor of G and Ap its characteristic curve, then Ap is the 

graph of a function (A) ip=f(vp) or (B) vp=f{ip)9 where f\R-^R is a smooth 
function. 

Then G is regularizable in the sense of [S.l, (3.3)]. Furthermore if Gx is 
the new circuit and TT1:H*1-^J£?

1X
(£{, then TTX is a C1 dijfeomorphism. 

The idea of the proof is to insert inductors in series with some of the 
resistors of type A and capacitors in parallel with some of the resistors of 
type B. 

2. Examples. 
EXAMPLE 2.1. This is a counterexample to Conjecture 1.3. Let M= 

Tn=Rnl(27rZ)n. We have the natural covering map Rn->*> Tn
9 such that p 

identifies points (xl9 • • • , xn), (x[9 • • • , x^) e Rn where {xi—x'^)\27T e Z. 
Let fi be the Riemannian metric on Tn induced by the euclidean metric fit 
of Rn. Let 

n 

â(xl9 - • • , xw) = 2 (1 ~ 2 sin x{) dxt. 

Then co is closed and there exists a closed 1-form co on Tn such that 
œ=p*(œ). It is not difficult to see that co is not exact. Let Z=grad^(co). 
Then Z i s C00 and X=(Xl9 • • • , Xn) (in coordinates) where X{ is a Morse-
Smale vector field on S1 with two singularities, a sink and a source. There­
fore X is a Morse-Smale vector field on Tn without closed orbits. 

EXAMPLE 2.2. Let p be a resistance such that its characteristic curve 
Apc:R2 has tangents in all directions. 

ASSERTION. Let G be a circuit such that p is the unique resistor of G. 
Then G is not regular. (We suppose obviously that p is not the unique 
element of G.) Write the currents and voltages of G as 

(i,v) = (x9y,z9x'9/9z')9 

where (x9 x') e £?*&', (y9/)e<gx<g' and (z, z') e & x ât'^R2 (for 
the notations see [S.l]). Let rr' :K-+3%xM''9 Y*^K and 7r:2->J§?X<T be 
as in [S.l]. Then IT' is surjective (because Kirchhoff laws do not impose 
restrictions in â%x@t') and S = (7r,)~1(A/9) is a submanifold of K. If p = 
( X J , Z , X ' , / , Z ' ) G S we have rS2 )={(x, y9 i , x'9y'9 z')=p\p eK and 
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(i , i ') G (TAp){z>zf)} and D7rp(p)=(x, j>') G J 2?X«" . If there exists /? G S, 
such that 2)77-̂  is surjective, then the projection ij^xv^K-^J^xW is 
surjective. Now 

dim(ker(f£ X vc)) = dim(K) - dim(oSf x «") = 1. 

Let p=(x, y, i , x', y', z') e ker( / ix^ c) , /MO. By the hypothesis, there 
exists (z, z') G Ap, such that (i , i ') G ( T A ^ ^ , ) , therefore p G TE,, where 
7r'(p) = (z9 Z') and D7r^(p)=0, p^O. This shows that 77 is not a local 
diffeomorphism at p. 

REFERENCES 

[A-R] Ralph Abraham, Joel Robbin and A. Kelley, Transversal mappings and flows, 
Benjamin, New York, 1967. MR 39 #2181. 

[P.l] M. M. Peixoto, On an approximation theorem of Kupka and Smale, J. Dif­
ferential Equations 3 (1967), 214-227, MR 35 #499. 

[P.2] , Structural stability on two-dimensional manifolds, Topology 1 (1962), 
101-120. MR 26 #426. 

[P.3] J. Palis, On Morse-Smale dynamical systems, Topology 8 (1968), 385-404. 
MR 39 #7620. 

[P-S] J. Palis and S. Smale, Structural stability theorems, Proc. Sympos. Pure Math., 
vol. 14 Amer. Math. Soc, Providence, R.I., 1970, pp. 223-231. MR 42 #2505. 

[S.l] S. Smale, On the mathematical foundations of electrical circuit theory, J. Dif­
ferential Geometry 7 (1972). 

[S.2] , Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 
747-817. MR 37 #3598. 

[S.3] , On gradient dynamical systems, Ann. of Math. (2) 74 (1961), 199-206. 
MR 24 #A2973. 

INSTITUTO DE MATEMÂTICA PURA E APLICADA, RIO DE JANEIRO, BRASIL 


