GENERALIZED GRADIENT FIELDS AND ELECTRICAL CIRCUITS¹

BY ALCIDES LINS NETO

Communicated by Jacob Feldman, January 9, 1974

1. Introduction. In On the mathematical foundations of electrical circuit theory, Smale [S.1] proposes the following two problems.

Problem 1.1. What can one say about the dynamical systems which are gradient systems with respect to a nondegenerate indefinite metric, say on a compact manifold.

Problem 1.2. Can one always regularize the equations of (1.6) [S.1], by adding arbitrarily small inductors and capacitors to the circuit appropriately? How? By regularizing we mean obtaining new equations which have the property $\pi: \sum \rightarrow \mathcal{L} \times \mathcal{C}'$ is a local diffeomorphism.

Furthermore he makes the following conjecture

Conjecture 1.3. Suppose $X=\operatorname{grad}(\omega)$ is the gradient of a closed 1-form with respect to a Riemannian metric on a compact manifold M. Suppose further that ω is not cohomologous to zero and that X is well behaved in the sense that it satisfies the conditions of [S.2, (2.2)]. Then X has a closed orbit, not a point, which is aymptotically stable (i.e. a sink).

In this work we give a counterexample to this conjecture. Furthermore we reformulate it, solving the new version in the case $\dim M=2$. For Problem 1.1 we obtain generic properties for the generalized gradient fields as in the Kupka-Smale theorem. Moreover we characterize structural stability for these types of vector fields in the case M is compact, orientable, and $\dim=2$. For Problem 1.2 we give a counterexample in the general case and solve the problem imposing conditions on the resistors of the circuit.

Before we state the theorems we need some definitions and notations. M will be a C^{∞} manifold (with or without boundary), $TM \oplus TM = \{(p, v, w) | p \in M, v, w \in TM_{p}\}.$

DEFINITION 1.4. A metric C^r on M is a C^r map $\mu:TM \oplus TM \to R$, such that for each $p \in M$, the map $\mu_p:TM_p \times TM_p \to R$ given by $\mu_p(v,w) = \mu(p,v,w)$ is bilinear symmetric. We say that μ is a nondegenerate metric on M if for each $p \in M$, μ_p is a nondegenerate bilinear form on TM_p .

AMS (MOS) subject classifications (1970). Primary 34D30; Secondary 94D20.

¹ This is a resume of my dissertation, developed at IMPA under the guidance of Professor Cesar Camacho.

NOTATIONS 1.5. $\Lambda^{1,r}(M)$ is the set of C^r , 1-forms on M and $\mathfrak{X}^r(M)$ is the set of C^r vector fields on M. Here we will consider $\Lambda^{1,r}(M)$ and $\mathfrak{X}^r(M)$ endowed with the Whitney C^r topology. $\mathscr{F}^r(M)$ will denote the set of closed C^r 1-forms on M and $\xi^r(M)$ the set of exact C^r 1-forms on M.

We remark that $\xi^r(M) \subset \mathscr{F}^r(M)$ are closed linear subspaces of $\Lambda^{1,r}(M)$. Definition 1.6. Let μ be a nondegenerate metric on M and $\omega \in \Lambda^{1,r}(M)$. We say that $X \in \mathfrak{X}^r(M)$ is the gradient of ω with respect to μ if for each $p \in M$ and $v \in TM_p$ we have

(1.6.1)
$$\mu_{p}(X(p), v) = \omega_{p}(v).$$

In this case we denote $X=\operatorname{grad}_{\mu}(\omega)$. It is not difficult to show that the equality (1.6.1) defines a unique C^r vector field on M and that the map $\operatorname{grad}_{\mu}: \Lambda^{1,r}(M) \to \mathfrak{X}^r(M)$ is an isomorphism of topological vector spaces.

NOTATIONS 1.7. In this section we fix a nondegenerate metric μ on M. 1.7.1. $\mathscr{F}^r_{\mu}(M) = \operatorname{grad}_{\mu}(\mathscr{F}^r(M))$ is the set of vector fields $X \in \mathfrak{X}^r(M)$, such that $X = \operatorname{grad}_{\mu}(\omega)$, $\omega \in \mathscr{F}^r(M)$.

- 1.7.2. $\xi_{\mu}^{r}(M) = \operatorname{grad}_{\mu}(\xi^{r}(M)).$
- 1.7.3. Let $M-S(\mathfrak{X}^r(M))$ be the set of Morse-Smale vector fields on M (cf. [P.3]). If $\mathcal{N} \subseteq \mathfrak{X}^r(M)$, then $\mathcal{N} \cap M S(\mathfrak{X}^r(M))$ is denoted by $M-S(\mathcal{N})$.
- 1.7.4. Let $\mathscr{G}_{123}(\mathfrak{X}^r(M))$ be the set of Kupka-Smale vector fields on M (cf. [P.1]). If $\mathscr{N} \subset \mathfrak{X}^r(M)$, then $\mathscr{N} \cap \mathscr{G}_{123}(\mathfrak{X}^r(M))$ is denoted by $\mathscr{G}_{123}(\mathscr{N})$.
- 1.7.5. We say that a closed C^1 curve $\gamma: [a, b] \to M$ is transversal to $\omega \in \mathcal{F}^r(M)$ if for each $t \in [a, b]$, $\omega_{\gamma(t)}(\gamma'(t)) \neq 0$.

Now we can state the results concerning Conjecture 1.3 and Problems 1.1, 1.2.

PROPOSITION 1.8. Let $\omega \in \mathcal{F}^r(M)$. Then there exists a Riemannian metric μ , such that $\operatorname{grad}_{\mu}(\omega)$ has a closed orbit which is an attractor if and only if ω admits a closed transversal.

THEOREM A. Let M be a C^{∞} compact, orientable, 2-dimensional manifold, $\partial M = \emptyset$ and $M \neq S^2$. Then the set of closed 1-forms which admit a closed transversal is open and dense in $\mathcal{F}^r(M)$.

Sketch of the proof. We note that only density offers some difficulty. The idea of the proof is to show that $\omega \in \mathscr{F}^r(M^2)$ can be approached by a 1-form $\tilde{\omega} \in \mathscr{F}^r(M)$, such that there is a leaf γ of the foliation induced by $\tilde{\omega}$ on M^2 which is nontrivially recurrent. Thus $\tilde{\omega}$ admits a closed transversal. We note that the perturbation of ω cannot be made locally, and in fact it is made in a tubular neighborhood of a closed curve on M^2 which intersects some leaf of ω transversally in a unique point.

We note that it is not difficult to construct an open set of closed 1-forms on $S^2 \times S^1$ which do not admit a closed transversal (note that $\xi^r(S^2 \times S^1) \neq \mathscr{F}^r(S^2 \times S^1)$).

A natural question is: For which manifolds M is the set of closed 1-forms which admit a closed transversal dense? We conjecture that a sufficient condition for dim $M \ge 3$ is $H_1(M; \mathbb{R}) \ne 0$ and $\pi_{n-1}(M) = 0$.

For Problem 1.1 we have the following results:

THEOREM B. Let M be a C^{∞} manifold. Then $\mathcal{G}_{123}(\mathcal{F}^r_{\mu}(M))$ $[\mathcal{G}_{123}(\xi^r_{\mu}(M))]$ is residual in $\mathcal{F}^r_{\mu}(M)$ $[\xi^r_{\mu}(M)]$ (μ is a fixed nondegenerate metric on M).

Sketch of the proof. The idea is to use a technique introduced by Abraham in [A-R, §§31, 32, 33]. We note that such techniques cannot be applied crudely to the problem when we are restricted to $\mathscr{F}^r_{\mu}(M)$. The following example shows the main difficulty.

Let $Q = \{(t, x) \in \mathbb{R}^2 | (t) \leq 1, |x| \leq 1\}$ and μ be the metric on \mathbb{R}^2 whose quadratic form is 2 dt dx. Given $f: \mathbb{R}^2 \to \mathbb{R}$ we have $\operatorname{grad}_{\mu}(df) = (\partial f/\partial y, \partial f/\partial x)$. Consider the Banach space

$$N = \{ \eta \in \xi^r(\mathbf{R}^2) \mid \eta(p) = 0 \text{ in } p \notin Q \}.$$

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by f(t, x) = x and $\omega = df$. Then $\operatorname{grad}_{\mu}(\omega) = (1, 0)$. Let N_1 be the open set of N, defined by

$$N_1 = \{ \eta \in N \mid \operatorname{grad}_u(\omega + \eta) = (Y_1, Y_2) \text{ with } Y_1(p) > \frac{1}{2} \forall p \in Q \}.$$

Let $\Sigma_1 = \{(t, x) \in Q | t = 1\}$ and $F: N_1 \to \Sigma_1$ be defined by $F(\eta)$ = the point where the orbit of $\operatorname{grad}_{\mu}(\omega + \eta)$, by the point (-1, 0), intersects Σ_1 . Then F is C^1 . To use Abraham's techniques it is essential that F be a submersion. In this example F is not a submersion at $\eta = 0$.

This difficulty is overcome by restricting the analysis to an open and dense subset τ of $\mathscr{F}^r_{\mu}(M)$. Then we show that $\mathscr{G}_{123}(\mathscr{F}^r_{\mu}(M))$ is residual in τ .

THEOREM C. Let M be a C^{∞} , compact manifold with $\partial M = \emptyset$. Let μ be a Riemannian metric on M. Then $M - S(\xi_{\mu}^{r}(M))$ is dense in $\xi_{\mu}^{r}(M)$.

Since the Morse-Smale vector fields are structurally stable (cf. [P-S]), it follows from Theorem C and minor arguments that the set of structurally stable vector fields in $\xi_{\mu}^{r}(M)$ is $M-S(\xi_{\mu}^{r}(M))$.

Smale [S.3] proves a weaker form of Theorem C. There he perturbs both the metric μ and the 1-form $\omega = df$.

THEOREM D. Let M be a C^{∞} compact, orientable, 2-dimensional manifold with $\partial M = \emptyset$. Let μ be a nondegenerate metric on M. Then $M - S(\mathcal{F}^r_{\mu}(M))$ $[M - S(\xi^r_{\mu}(M))]$ is dense in $\mathcal{F}^r_{\mu}(M)$ $[\xi^r_{\mu}(M)]$.

The idea of the proof is to use the techniques developed by Peixoto in [P.2].

In §2 we give an example which shows that the answer to Problem 1.2, in the general case, is no. However we have the following result:

THEOREM E. Let G be a circuit which satisfies:

- (a) The projection $i_L \times v_C : K \to \mathcal{L} \times \mathcal{C}'$ (cf. [S.1, p. 4]) is surjective.
- (b) If ρ is a resistor of G and Λ_{ρ} its characteristic curve, then Λ_{ρ} is the graph of a function (A) $i_{\rho} = f(v_{\rho})$ or (B) $v_{\rho} = f(i_{\rho})$, where $f: \mathbf{R} \to \mathbf{R}$ is a smooth function.

Then G is regularizable in the sense of [S.1, (3.3)]. Furthermore if G_1 is the new circuit and $\pi_1: \Sigma_1 \to \mathcal{L}_1 \times \mathcal{C}'_1$, then π_1 is a C^1 diffeomorphism.

The idea of the proof is to insert inductors in series with some of the resistors of type A and capacitors in parallel with some of the resistors of type B.

2. Examples.

EXAMPLE 2.1. This is a counterexample to Conjecture 1.3. Let $M = T^n = \mathbb{R}^n/(2\pi\mathbb{Z})^n$. We have the natural covering map $\mathbb{R}^n \to T^n$, such that p identifies points (x_1, \dots, x_n) , $(x_1', \dots, x_n') \in \mathbb{R}^n$ where $(x_i - x_i')/2\pi \in \mathbb{Z}$. Let μ be the Riemannian metric on T^n induced by the euclidean metric $\tilde{\mu}$ of \mathbb{R}^n . Let

$$\tilde{\omega}(x_1,\dots,x_n) = \sum_{i=1}^n (1-2\sin x_i) dx_i.$$

Then $\tilde{\omega}$ is closed and there exists a closed 1-form ω on T^n such that $\tilde{\omega} = p^*(\omega)$. It is not difficult to see that ω is not exact. Let $X = \operatorname{grad}_{\mu}(\omega)$. Then X is C^{∞} and $X = (X_1, \dots, X_n)$ (in coordinates) where X_i is a Morse-Smale vector field on S^1 with two singularities, a sink and a source. Therefore X is a Morse-Smale vector field on T^n without closed orbits.

EXAMPLE 2.2. Let ρ be a resistance such that its characteristic curve $\Lambda_0 \subset R^2$ has tangents in all directions.

ASSERTION. Let G be a circuit such that ρ is the unique resistor of G. Then G is not regular. (We suppose obviously that ρ is not the unique element of G.) Write the currents and voltages of G as

$$(i, v) = (x, y, z, x', y', z'),$$

where $(x, x') \in \mathcal{L} \times \mathcal{L}'$, $(y, y') \in \mathcal{C} \times \mathcal{C}'$ and $(z, z') \in \mathcal{R} \times \mathcal{R}' \cong \mathbf{R}^2$ (for the notations see [S.1]). Let $\pi' : K \to \mathcal{R} \times \mathcal{R}'$, $\Sigma \subset K$ and $\pi : \Sigma \to \mathcal{L} \times \mathcal{C}'$ be as in [S.1]. Then π' is surjective (because Kirchhoff laws do not impose restrictions in $\mathcal{R} \times \mathcal{R}'$) and $\Sigma = (\pi')^{-1}(\Lambda_{\rho})$ is a submanifold of K. If $p = (x, y, z, x', y', z') \in \Sigma$ we have $T\Sigma_{p} = \{(\dot{x}, \dot{y}, \dot{z}, \dot{x}', \dot{y}', \dot{z}') = \dot{p} \mid \dot{p} \in K \text{ and } \Sigma \in \mathcal{L}' \setminus \mathcal{L}' \in \mathcal{L}' \setminus \mathcal{L}' \setminus$

 $(\dot{z},\dot{z}') \in (T\Lambda_{\rho})_{(z,z')}$ and $D\pi_{p}(\dot{p}) = (\dot{x},\dot{y}') \in \mathcal{L} \times \mathcal{C}'$. If there exists $p \in \Sigma$, such that $D\pi_{p}$ is surjective, then the projection $i_{L} \times v_{c} : K \rightarrow \mathcal{L} \times \mathcal{C}'$ is surjective. Now

$$\dim(\ker(i_L \times v_c)) = \dim(K) - \dim(\mathcal{L} \times \mathcal{C}') = 1.$$

Let $\dot{p}=(\dot{x},\dot{y},\dot{z},\dot{x}',\dot{y}',\dot{z}') \in \ker(i_L \times v_c)$, $\dot{p} \neq 0$. By the hypothesis, there exists $(z,z') \in \Lambda_\rho$, such that $(\dot{z},\dot{z}') \in (T\Lambda_\rho)_{(z,z')}$, therefore $\dot{p} \in T\Sigma_p$ where $\pi'(p)=(z,z')$ and $D\pi_p(\dot{p})=0$, $\dot{p}\neq 0$. This shows that π is not a local diffeomorphism at p.

REFERENCES

- [A-R] Ralph Abraham, Joel Robbin and A. Kelley, *Transversal mappings and flows*, Benjamin, New York, 1967. MR 39 #2181.
- [P.1] M. M. Peixoto, On an approximation theorem of Kupka and Smale, J. Differential Equations 3 (1967), 214-227, MR 35 #499.
- [P.2] —, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101-120. MR 26 #426.
- [P.3] J. Palis, On Morse-Smale dynamical systems, Topology 8 (1968), 385-404. MR 39 #7620.
- [P-S] J. Palis and S. Smale, Structural stability theorems, Proc. Sympos. Pure Math., vol. 14 Amer. Math. Soc., Providence, R.I., 1970, pp. 223-231. MR 42 #2505.
- [S.1] S. Smale, On the mathematical foundations of electrical circuit theory, J. Differential Geometry 7 (1972).
- [S.2] ——, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 37 #3598.
- [S.3] ——, On gradient dynamical systems, Ann. of Math. (2) 74 (1961), 199-206. MR 24 #A2973.

INSTITUTO DE MATEMÁTICA PURA E APLICADA, RIO DE JANEIRO, BRASIL