REDUCTION THEORY IN ALGEBRAIC NUMBER FIELDS

BY HANS ZASSENHAUS

Communicated by Olga Taussky Todd, February 19, 1974

When is the half-group $GL(n, \mathbb{Z}^{\geq 0})$ of the unimodular matrices of degree n over the half-ring $\mathbb{Z}^{\geq 0}$ of the nonnegative integers finitely generated ?¹ Precisely if n < 3.

Here the reduction of finite real extensions E of the rational number field is based on Theorem 1 stating the finiteness of the number of all matrices of degree n over $Z^{\geq 0}$ with a given irreducible characteristic polynomial over Z, the rational integer ring, and on the following generalization of a well-known Frobenius theorem (Theorem 2): Let the semisimple commutative hypercomplex system A over R, the real number field, contain a semiring H that is closed for the natural topology of A such that A=H+(-H), $H\cap -H=\{0\}$ (pointed cone semiring). Then there are finitely many R-homomorphisms θ_i $(1 \le i \le s)$ of A into the complex number field C such that (1) $\bigcap_{i=1}^{s} \ker \theta_{i} = 0$, (2) $\ker \theta_{i} + \ker \theta_{k} = 0$ A $(1 \le i < k \le s)$, (3) $A\theta_i = \mathbf{R}$ $(1 \le i \le \rho; 0 < \rho \le s)$, ρ maximum, (4) for each ρ -tuple of nonnegative real numbers $\alpha_1, \dots, \alpha_{\rho}$ there is an element h of H for which $h\theta_i = \alpha_i$ $(1 \le i \le \rho)$, and (5) the set $C = \{(h\theta_1, \dots, h\theta_s) | h \in P\}$ $H\&0 \le |h\theta_i| \le 1$ $(1 \le i \le s)$ is a closed convex subset of $C^{1\times s}$ containing 0 and closed under multiplication, and conversely. Note that $|\lambda_i| \leq$ $\max_{1 \le i \le \rho} |\lambda_i| \ (1 \le i \le s) \ \text{for} \ (\lambda_1, \dots, \lambda_s) \ \text{of} \ C.$

Theorem 1 is applied to a dedekind module M of E that is invariant under the E-order Λ . Any basis of M over Z leading to an irreducible integral representation Δ of Λ representing a given primitive element ω of E contained in Λ by an integral matrix Ω of degree n over $Z^{\geq 0}$ permits the repeated formation of certain $\alpha\beta$ -successors (predecessors) defined as

$$S^{\varepsilon}_{\alpha\beta}(\Omega) = T^{-\varepsilon}_{\alpha\beta}\Omega T^{\varepsilon}_{\alpha\beta}$$

 $(\alpha \neq \beta, 1 \leq \alpha \leq n, 1 \leq \beta \leq n, \epsilon = \pm 1, S_{\alpha\beta}^{\epsilon}(\Omega) \in (\mathbf{Z}^{\geq 0})^{n \times n})$ defining an oriented finite graph $\Gamma(\Omega)$ with a finitely presented fundamental group generated

AMS (MOS) subject classifications (1970). Primary 12A45, 12A50.

¹ This question was raised recently by G. Pall; it started the present exploration of a semigroup theoretic generalization of Lagrange's reduction theory. We utilize the subsemigroup S_n of $GL(n, \mathbb{Z}^{\geq 0})$ which is generated by the permutation matrices and the transvection matrices $T_{\alpha\beta} = I_n^+(\delta_{i\alpha}\delta_{k\beta})$ $(\alpha \neq \beta, 1 \leq \alpha \leq n, 1 \leq \beta \leq n)$ which is proper precisely if $n \geq 3$.

by fundamental loops corresponding to finitely many integral matrices commuting with Ω and generating a subgroup U_{Ω} of the image of the unit group, $U(\Lambda)$, of Λ under Δ . An estimate based on Theorem 2 and the geometry of numbers is given such that $U_{\Omega^{\nu}}\langle -I_n\rangle = U(\Lambda)\Delta$ if $\nu \geq \nu_0$. A method for obtaining a representative set of the ideal classes of Λ is developed in analogy to the method using continued fractions for real quadratic number field arithmetics.

A dualization method giving a new interpretation of the basic paper on 'matrix classes corresponding to an ideal and its inverse' (Illinois J. Math. 1 (1957), 108-113) by Olga Taussky is used in the course of the constructions.

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210