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When is the half-group GL(n9 Z-°) of the unimodular matrices of 
degree n over the half-ring Z - ° of the nonnegative integers finitely gen­
erated?1 Precisely if w<3. 

Here the reduction of finite real extensions E of the rational number 
field is based on Theorem 1 stating the finiteness of the number of all 
matrices of degree n over Z - ° with a given irreducible characteristic 
polynomial over Z, the rational integer ring, and on the following general­
ization of a well-known Frobenius theorem (Theorem 2) : Let the semi-
simple commutative hypercomplex system A over R, the real number 
field, contain a semiring H that is closed for the natural topology of A 
such that A=H+(—H), Hn—H={0} (pointed cone semiring). Then 
there are finitely many jR-homomorphisms 0t- (l^i^s) of A into the 
complex number field C such that (1) f]s

i=1 ker 0^=0, (2) ker 0^+ker 6k= 
A (l^i<k^s), (3) AO—R ( l < ^ p ; 0 < p < ^ ) , p maximum, (4) for 
each p-tuple of nonnegative real numbers al5 • • • , ap there is an element 
h of tffor which /z0,=oc, (1 <ii^/>), and (5) the set C={(h6l9 • • • , hds)\h E 
H8cO^\h6t\^l (l^i^s)} is a closed convex subset of C1Xs containing 0 
and closed under multiplication, and conversely. Note that |AJ^ 
m a x i ^ p |A,| (l^i^s) for (Àl9 • • • , As) of C. 

Theorem 1 is applied to a dedekind module M of E that is invariant 
under the border A. Any basis of M over Z leading to an irreducible 
integral representation A of A representing a given primitive element co 
of E contained in A by an integral matrix O of degree n over Z - ° permits 
the repeated formation of certain a/î-successors (predecessors) defined as 

s;,(0) = T^QTI, 

(OCT^, l ^ a ^ / i , l^jff^/i, e = ± l , 5 ^ ( Ü ) G (Z^°)nxn) defining an oriented 
finite graph T(£i) with a finitely presented fundamental group generated 

AMS (MOS) subject classifications (1970). Primary 12A45, 12A50. 
1 This question was raised recently by G. Pall ; it started the present exploration of a 

semigroup theoretic generalization of Lagrange's reduction theory. We utilize the 
subsemigroup Sn of GL(«, Z^°) which is generated by the permutation matrices and 
the transvection matrices T(Xp=I+(ôi(XôkB) (a?*/?, l^oc^n, l^P^n) which is proper 
precisely if n>3. 
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by fundamental loops corresponding to finitely many integral matrices 
commuting with Q. and generating a subgroup UQ of the image of the unit 
group, U(A), of A under A. An estimate based on Theorem 2 and the 
geometry of numbers is given such that i7ftV(--/w) = C/(A)A if v^iv0. A 
method for obtaining a representative set of the ideal classes of A is 
developed in analogy to the method using continued fractions for real 
quadratic number field arithmetics. 

A dualization method giving a new interpretation of the basic paper on 
'matrix classes corresponding to an ideal and its inverse' (Illinois J. Math. 
1 (1957), 108-113) by Olga Taussky is used in the course of the con­
structions. 

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210 


