BULLETIN OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 80, Number 5, September 1974

MEASURABLE CHOICE AND THE INVARIANT
SUBSPACE PROBLEM

BY EDWARD A. AZOFF AND FRANK GILFEATHER!

Communicated by P. R. Halmos, February 8, 1974

In [1], J. Dyer, A. Pedersen and P. Porcelli announced that an affir-
mative answer to the invariant subspace problem would imply that every
reductive operator is normal. Their argument, outlined in [1], provides a
striking application of direct integral theory. Moreover, this method leads
to a general decomposition theory for reductive algebras which in turn
illuminates the close relationship between the transitive and reductive
algebra problems.

The main purpose of the present note is to provide a short proof of
the technical portion of [1]: that invariant subspaces for the direct inte-
grands of a decomposable operator can be assembled “in a measurable
fashion”. The general decomposition theory alluded to above will be
developed elsewhere in a joint work with C. K. Fong, though we do
present a summary of some of its consequences below.

All Hilbert spaces discussed in this paper will be separable and all
operators will be bounded. We use the term ‘algebra’ to refer to an iden-
tity—containing algebra of operators which is closed in the weak operator
topology. A transitive algebra is an algebra having no nontrivial invariant
subspaces; more generally, an algebra is called reductive if it is reduced
by each of its invariant subspaces.

The reader is referred to [2] or [3] for the details of direct integral
theory; the primary purpose of the following summary is to fix notation.
Let u be the completion of a finite positive regular Borel measure supported
on a g-compact subset of a separable metric space A and let {e,,}, | Sn= oo,
be a collection of disjoint Borel subsets of A with union A. Leth; ch, < - -
< h,, be a sequence of Hilbert spaces with 4, having dimension n and #,,
spanned by the remaining 4,,’s. We write h= [, P h(A)u (d2) for the Hilbert
space of (equivalence classes of) weakly measurable functions f from
A into A, such that for A € e,,, f(1) € h(A)=h,, and [, | f(A)|2x (d2)< co.
The element in % represented by the function A—f(4) is denoted by
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An operator 4 on 4 is said to be decomposable if there exists a u-meas-
urable operator-valued function A(-) defined on A for which 4(4) is an
operator on A(A) and for f in h, (Af)(A)=AA)f(2). We write A=
fa @ A(A)u (dA) for the equivalence class corresponding to A(+). If A(4)
is a scalar multiple of the identity on /(1) for almost all 4, then 4 is called
diagonal.

The following proposition should be compared with [1, Theorem 3(a)].
The measure-theoretic difficulties alluded to there are avoided here
because the hypotheses on A allow us to use von Neumann’s principle of
measurable choice.

PROPOSITION. Let A=, @ A(A)u (dA) be a decomposable operator
on h. Then the set T of A€ A, for which A(X) has a nontrivial invariant
subspace, is measurable. Furthermore, there exists a decomposable pro-
Jection P={, @ P(A)u (dA) such that Ph is invariant under A and P(2) is
nontrivial if and only if A€ T.

ProOOF. Without loss of generality, we assume that A=e, for some
k= o0 and that |4| =1. We denote by B the set of contraction operators
on h;, with the weak operator topology and recall that this makes B into
a compact metric space. Thus, by modifying the {4 (4)} on a set of measure
zero if necessary, we may as well assume the correspondence A—4(4) is a
Borel map between A and B.

Set E={(4, Q)€ AxB:Q is a nontrivial projection and QA4(4)Q=
A(2)Q}. Then II ,(E)=T and since composition is a Borel map from Bx B
to B, we see that E is a Borel subset of AxB. We now apply von
Neumann’s principle of measurable choice ([2, Chapter I, Lemma 4.7] or
[3, §16, Lemma 4]). This shows that 7" is measurable and gives us a Borel
function P whose domain D differs from T by a set of measure zero and
whose graph is contained in E. The proof is completed by setting P(1)=0
for 2 ¢ D.

The following is the result announced in the title of [1].

THEOREM. The following are equivalent:

(1) Every operator on a Hilbert space of dimension greater than one has
a nontrivial invariant subspace.

(2) Every reductive operator is normal.

ProoF. The implication (2) implies (1) is clear. Conversely, assume
(1) and suppose A is a reductive operator on a Hilbert space /. Let & be
a maximal abelian von Neumann subalgebra of {4}’ (the commutant of
A). Applying Theorem 6 of [2, Chapter I], we decompose % as a direct
integral, h={, @@ h(A)u (d2), of Hilbert spaces in such a way that & co-
incides with the corresponding algebra of diagonal operators. Since A
commutes with &, it is decomposable and we write A={, B A(A)u (dA).
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Let P and T be as in the Proposition. Clearly P commutes with & and
since 4 is reductive, P also commutes with 4. Thus the maximality of &
shows P € &, i.e. P() is trivial for almost all 2. Consequently, 7 has meas-
ure zero and it follows from (1) that almost all of the spaces /4(4) are one
dimensional. In particular A= [, @ A(A)u (dA) is diagonal and hence
normal.

The technique illustrated above can be used to develop a method for
expressing a reductive algebra as a direct integral of transitive algebras.
Naturally this illuminates the close relationship between the transitive
and reductive algebra problems. The following three results (as well as
the one above) all follow with the aid of such a decomposition and illus-
trate this point.

THEOREM. The following are equivalent:
(1) The only abelian transitive algebra is the trivial one.
(2) Every abelian reductive algebra is selfadjoint.

THEOREM. The following are equivalent:

(1) Every operator A has a nontrivial hyperinvariant subspace (i.e. in-
variant for {A}') or is a multiple of the identity.

(2) Every reductive algebra of the form {A}' is selfadjoint.

THEOREM (RADJAVI-ROSENTHAL). Every reductive algebra containing a
maximal abelian selfadjoint algebra of operators is selfadjoint.
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