THE ORIENTED TOPOLOGICAL AND PL COBORDISM RINGS ${ }^{1}$

BY I. MADSEN AND R. J. MILGRAM
Communicated by William Browder, December 17, 1973

1. Introduction and statement of results. In this note we announce results on the 2 -local structure of the oriented topological cobordism ring $\Omega_{*}^{\text {TOP }}$ and its PL analogue Ω_{*}^{PL}.

It is a well-known consequence of transversality that

$$
\Omega_{*}^{\mathrm{TOP}}=\pi_{*}(\mathrm{MSTOP}), \quad * \neq 4 \quad \text { and } \quad \Omega_{*}^{\mathrm{PL}}=\pi_{*}(\mathrm{MSPL}),
$$

where MSTOP and MSPL are the oriented Thom spectra.
Also, the homotopy theory of these spectra divides into two distinct problems: the theory at the prime 2 and the theory away from 2 . We let $\boldsymbol{Z}_{(2)}$ denote the integers localized at 2 and $\boldsymbol{Z}\left[\frac{1}{2}\right]$ the integers localized away from 2.

Sullivan [9] showed that the free part of $\Omega_{*}^{\mathrm{TOP}} \otimes \boldsymbol{Z}\left[\frac{1}{2}\right]\left(=\Omega_{*}^{\mathrm{PL}} \otimes \boldsymbol{Z}\left[\frac{1}{2}\right]\right)$; $\Omega_{*}^{\mathrm{TOP}} / \operatorname{Tor} \otimes \boldsymbol{Z}\left[\frac{1}{2}\right]$ is a polynomial algebra with one generator in each dimension congruent to zero mod 4.

At the prime 2 Browder, Liulevicius and Peterson [2] show that the localized spectra $\mathrm{MSTOP}_{(2)}$ and $\mathrm{MSPL}_{(2)}$ become wedges of EilenbergMac Lane spectra. Hence the homotopy theory is a direct consequence of the homology theory. In particular,

$$
\left(\Omega_{*}^{\mathrm{TOP}} / \text { Tor }\right) \otimes \boldsymbol{Z}_{(2)}=H_{*}\left(\text { BSTOP } ; \boldsymbol{Z}_{(2)}\right) / \text { Tor }
$$

and similarly in the PL case.
Let $M_{0}^{4 n}, n>1$, be the Milnor manifold of index 8 constructed by plumbing disk tangent bundles of $S^{2 n}$ (see Browder [1, p. 122]). The boundary of $M_{0}^{4 n}$ is the PL sphere $S^{4 n-1}$. We set $M^{4 n}=M_{0}^{4 n} \cup_{\partial} C S^{4 n-1}$ to obtain a closed PL manifold of index 8.

In the rest of this note, $P(X), E(X)$ and $\Gamma(X)$ will denote the polynomial algebra, exterior algebra, and divided power algebra, respectively generated by the set X. For a natural number $n, \alpha(n)$ will be the number of nonzero terms in the dyadic expansion and $\nu(n)$ the 2 -adic valuation ($n=2^{\nu(n)}$ odd).

[^0]Theorem A. As rings,
$\left(\Omega_{*}^{\mathrm{TOP}} /\right.$ Tor $) \otimes \boldsymbol{Z}_{(2)}$

$$
=P\left\{\left[C P^{2 n}\right] \mid \alpha(n)<v(n)+4\right\} \otimes \Gamma\left\{\left[M^{4 n}\right] \mid \alpha(n) \geqq v(n)+4\right\} .
$$

Moreover, $\left(\Omega_{*}^{\mathrm{PL}} /\right.$ Tor $) \otimes \boldsymbol{Z}_{(2)}=\left(\Omega_{*}^{\mathrm{TOP}} /\right.$ Tor $) \otimes \boldsymbol{Z}_{(2)}$. Here CP ${ }^{2 n}$ is the complex projective space.

The torsion structures of $\Omega_{*}^{\mathrm{TOP}} \otimes \boldsymbol{Z}_{(2)}, * \neq 4$ and $\Omega_{*}^{\mathrm{PL}} \otimes \boldsymbol{Z}_{(2)}$ are very involved, and even though our techniques give the groups, we know comparatively little about the explicit generators. However, there are a finite number of explicit constructions-twisted products, and Massey products-which generate the torsion from a small set of "basic" torsion manifolds. Among these generators are specific ones given by relations among the Milnor manifolds and the $C P^{2 n}$,s. For example, the relation below (the first which occurs) generates a $Z / 2 Z$ direct summand in Ω_{8}^{PL}.

$$
2\left\{7\left[M^{8}\right]-200\left[C P^{2} \times C P^{2}\right]+144\left[C P^{4}\right]\right\}=0
$$

while in dimension 12 there is a $Z / 4 Z$ summand generated by the relation

$$
1.34\left\{31\left[M^{12}\right]-1620\left[C P^{6}\right]+5292\left[C P^{4}\right] \cdot\left[C P^{2}\right]-3920\left[C P^{2}\right]^{3}\right\}=0
$$

1.2 and 1.3 are a little surprising since it is well known that the smallest multiple of M^{8} which is actually PL homeomorphic to a differentiable manifold is $28 M^{8}$ while the corresponding number for M^{12} is 992 .

In the rest of this note, all spaces and maps are to be taken in the 2local category (see [10] for a precise definition). Unless otherwise indicated $H_{*}(X)\left(H^{*}(X)\right)$ will denote homology (cohomology) of X with Z coefficients. (Note. $H_{*}(X ; \boldsymbol{Z})=H_{*}\left(X ; \boldsymbol{Z}_{(2)}\right)$ when X is 2-local.)
2. Preliminaries. The map $\mathrm{BSG} \rightarrow B(\mathrm{G} / \mathrm{TOP})$. It is a well-known result of Sullivan that $G /$ TOP is a product of Eilenberg-Mac Lane spaces. In [7] and [8] specific homotopy equivalences

$$
K: G / \mathrm{TOP} \rightarrow \prod_{n \geqq 1} K\left(Z_{(2)}, 4 n\right) \times K(Z / 2,4 n-2)
$$

were constructed. The mapping K depends on the "genus" used in the "surgery formulas". In this note we use the map defined in [7].

In [6] we examined the space $B(G / T O P)$ as well as the natural map $B \pi: \mathrm{BSG} \rightarrow B(G / \mathrm{TOP})$. The main result there is

Proposition 2.1. (i) There is an H-map

$$
B K: B(G / \mathrm{TOP}) \rightarrow \prod_{n \geqq 1} K\left(Z_{(2)}, 4 n+1\right) \times K(Z / 2,4 n-1)
$$

with $\Omega(B K \circ B \pi)=K \circ \pi$ and $B K$ a homotopy equivalence $(\pi: S G \rightarrow G /$ TOP the natural map).
(ii) The class $B \pi^{*}\left(K_{4 n+1}\right)$ is divisible by precisely $2^{\alpha(n)-1}$, where $K_{4 n+1}=$ (BK)* (fundamental class).

Next we specify the classes $(B \pi)^{*} K_{4 n+1}$ more precisely. To do this we will specify the structure of the $\boldsymbol{Z}_{(2)}$ cohomology of BSG by determining its Bochstein spectral sequence (BSS). We first introduce 3 (acyclic) $D G$-Hopf algebras over $\boldsymbol{Z}_{(2)}$ which will be our basic building blocks.

$$
\begin{gather*}
A_{0}\langle k\rangle=P\left\{p_{n} \mid n \geqq 1\right\} \otimes E\left\{e_{n} \mid n \geqq 1\right\}, \tag{I}\\
\operatorname{deg}\left(p_{n}\right)=4 n, \quad \operatorname{deg}\left(e_{n}\right)=4 n+1, \quad \psi\left(p_{n}\right)=\sum p_{i} \otimes p_{n-i}, \\
\psi\left(e_{n}\right)=\sum p_{i} \otimes e_{n-i}+e_{i} \otimes p_{n-i}, \quad \delta\left(p_{n}\right)=2^{k} e_{n} . \\
A_{1}\{x \mid k\}=P\{x\} \otimes E\{y\}, \tag{II}\\
\operatorname{deg} x=4 n, \quad \operatorname{deg} y=4 n+1, \quad \psi(x)=1 \otimes x+x \otimes 1, \\
\psi(y)=1 \otimes y+y \otimes 1, \quad \delta x=2^{k} y . \\
A_{2}\{x \mid k\}=E\{y\} \otimes \Gamma\{x\}, \tag{III}\\
\operatorname{deg} x=4 n, \quad \operatorname{deg} y=4 n-1, \quad \psi(y)=1 \otimes y+y \otimes 1
\end{gather*}
$$

and

$$
\psi(x)=1 \otimes x+x \otimes 1, \quad \delta y=2^{k} x
$$

(hence $\delta\left(y \cdot \gamma_{2^{r}-1}(x)\right)=2^{k+r} \gamma_{2^{r}}(x)$). If X is a graded set concentrated in degrees congruent to zero mod 4, we write $A_{i}\{X \mid k\}=\otimes_{x \in X} A_{i}\{x \mid k\}$, $i=1,2$. Each of the $D G$-Hopf algebras above have an associated Bochstein spectral sequence $\left\{E_{r}(), d_{r}\right\}$. From [5] we quote

Proposition 2.2. For $\dot{r} \geqq 2$, the cohomology BSS of the space BSG is

$$
E_{r}(\mathrm{BSG})=E_{r}\left(A_{0}\langle 3\rangle\right) \otimes E_{r}\left(A_{2}\{X \mid 2\}\right)
$$

for a suitable graded set X.
Let $j_{r}: H^{*}(\mathrm{BSG}) \rightarrow E_{r}(\mathrm{BSG})$ denote the natural reduction map. From [3] and [6] we have

Proposition 2.3. (i) $j_{3}\left(2^{1-\alpha(n)} B \pi^{*}\left(K_{4 n+1}\right)\right)=e_{n}+$ decomposable terms.
(ii) $B \pi^{*}\left(K_{4 n-1}\right)=0$ for $\alpha(n)>1$.
(iii) $\mathrm{Sq}^{2} B \pi^{*}\left(K_{2^{i-1}}\right)=e_{2^{i}+1}$.
3. The $D G$-Hopf algebra \mathscr{T}. In $\S 4$ we show that the following $D G$ Hopf algebra over $\boldsymbol{Z}_{(2)}$ is a split subalgebra of the BSS for BSTOP.

$$
\begin{aligned}
& \mathscr{T}=P\left\{p_{n} \mid n \geqq 1\right\} \otimes P\left\{k_{n} \mid n \geqq 1\right\} \otimes E\left\{\varepsilon_{n} \mid n \geqq 1\right\} \\
& \operatorname{deg} p_{n}=4 n, \quad \operatorname{deg} k_{n}=4 n \quad \text { and } \operatorname{deg} \varepsilon_{n}=4 n+1 \\
& \psi\left(p_{n}\right)=\sum p_{i} \otimes p_{n-i}, \\
& \psi\left(k_{n}\right)=1 \otimes k_{n}+k_{n} \otimes 1, \quad \psi\left(\varepsilon_{n}\right)=1 \otimes \varepsilon_{n}+\varepsilon_{n} \otimes 1,
\end{aligned}
$$

with differential structure given by

$$
\delta p_{n}=16 e_{n}, \quad \delta k_{n}=2^{\alpha(n)} \varepsilon_{n} \quad \text { where } e_{n}=\sum \varepsilon_{i} p_{n-i}
$$

Husemoller [4] has introduced a splitting of the Hopf algebra $P\left\{p_{n} \mid n \geqq 1\right\}$ as a tensor product of "smaller" Hopf algebras,
($\operatorname{deg} p_{n, i}=2^{i+2} n$). We split \mathscr{T} accordingly,

$$
\begin{aligned}
\mathscr{T} & ={ }_{n \text { odd }} \otimes \mathscr{T}(n) \\
\mathscr{T}(n) & =P\left\{p_{n, 0}, p_{n, 1}, \cdots\right\} \otimes P\left\{k_{n, 0}, k_{n, 1}, \cdots\right\} \otimes E\left\{\varepsilon_{n, 0}, \varepsilon_{n, 1}, \cdots\right\} .
\end{aligned}
$$

Here $k_{n, i}=k_{2^{2} n}, \varepsilon_{n, i}=\varepsilon_{2^{i} n}$ and the differential structure is (inductively) determined by

$$
\delta\left(k_{n, i}\right)=2^{\alpha(n)} \varepsilon_{n, i} \text { and } \quad \delta\left(2^{i} p_{n, i}+\cdots+p_{n, 0}^{2^{i}}\right)=2^{i+4} \varepsilon_{n, i}
$$

Lemma 3.1. (i) If $\alpha(n)<4$, then

$$
E_{s}(\mathscr{T}(n))=P\left\{p_{n, 0}, p_{n, 1}, \cdots\right\} \otimes E_{s}\left(A_{1}\left\{k_{n, 0}, k_{n, 1}, \cdots \mid \alpha(n)\right\}\right)
$$

(ii) If $\alpha(n) \geqq 4$, then for $s \geqq \alpha(n)$,

$$
\begin{aligned}
E_{s}(\mathscr{T}(n))= & P\left\{k_{n, 0}, \cdots, k_{n, r-1}, k_{n, r}+p_{n, 0}^{2^{r}}, p_{n, 0}^{2^{r+1}}, p_{n, 1}^{2^{r+1}}, \cdots\right\} \\
& \otimes E_{s}\left(A_{1}\left\{\bar{k}_{n, r}, \bar{k}_{n, r+1}, \cdots \mid \alpha(n)\right\}\right),
\end{aligned}
$$

where

$$
r=\alpha(n)-4 \quad \text { and } \quad \bar{k}_{n, r+i}=p_{n, i}^{2^{r}}+\sum_{j=1}^{i-1} p_{n, i-j-1}^{2^{r+j+1}-2^{r+1}} \bar{k}_{n, r+i-j}+k_{n, r+i}
$$

4. Theorem A. There is a natural map $\mathrm{BSO} \times G / \mathrm{TOP} \rightarrow \mathrm{BSTOP}$ which on homology leads to
4.1 $\quad P\left\{a_{n} \mid n \geqq 1\right\} \otimes \Gamma\left\{b_{n} \mid n \geqq 1\right\} \xrightarrow{r_{*}} H_{*}$ (BSTOP)/Tor,
where a_{n} is dual to $p_{1}^{n} \in H^{4 n}(\mathrm{BSO}) /$ Tor and b_{n} is spherical. We observe that the structure of H_{*} (BSTOP)/Tor follows at once if we can prove that $\left(H^{*}(\mathrm{BSTOP}) /\right.$ Tor $) \otimes \boldsymbol{Z} / 2=E_{\infty}(\mathscr{T})$, where $E_{\infty}(\mathscr{T})=\otimes_{n \text { odd }} E_{\infty}(\mathscr{T}(n))$ is
described in 3.1. Therefore the thrust of the argument is to evaluate the BSS of BSTOP.

Our starting point is the fibration sequence, $\cdots \rightarrow$ BSTOP \rightarrow BSG \rightarrow $B(G / \mathrm{TOP}) \rightarrow \cdots$. It is convenient to decompose this sequence in two steps. Let

$$
B K_{1}=\prod_{i>1} K\left(Z / 2,2^{i}-1\right)
$$

and

$$
B K_{2}=\prod_{n>1} K\left(Z_{(2)}, 4 n+1\right) \times \prod_{\alpha(n)>1} K(Z / 2,4 n-1)
$$

We have the fibration sequences $\left(\Omega B K_{i}=K_{i}\right)$
4.2

$$
\begin{aligned}
& \cdots \rightarrow K_{1} \rightarrow B X \rightarrow \mathrm{BSG} \rightarrow B K_{1} \rightarrow \cdots \\
& \cdots \rightarrow K_{2} \rightarrow \mathrm{BSTOP} \rightarrow B X \rightarrow B K_{2} \rightarrow \cdots
\end{aligned}
$$

Lemma 4.3. (i) There are graded sets X_{1} and X_{2} such that for $r \geqq 2$ the r th term in the BSS of $B X$ is

$$
E_{r}(B X)=E_{r}\left(A_{0}\langle 4\rangle\right) \otimes E_{r}\left(A_{1}\left\{X_{1} \mid 2\right\}\right) \otimes E_{r}\left(A_{2}\left\{X_{2} \mid 2\right\}\right)
$$

(ii) The inclusion $i: K_{1} \rightarrow B X$ maps $E_{r}\left(A_{1}\left\{X_{1} \mid 2\right\}\right)$ injectively into BSS for K_{1}.

It follows from 2.5 and 4.3 above that

$$
H^{*}(\mathrm{BSTOP} ; Z / 2)=H^{*}(B X ; Z / 2) \otimes H^{*}\left(K_{2}\right)
$$

Let $j: K_{2} \rightarrow$ BSTOP be the map in 4.2. Our main technical result is
Theorem 4.4. (i) There are graded sets Y_{1} and Y_{2} such that for $r \geqq 2$

$$
E_{r}(\mathrm{BSTOP})=E_{r}(\mathscr{T}) \otimes E_{r}\left(A_{1}\left\{Y_{1} \mid 2\right\}\right) \otimes E_{r}\left(A_{2}\left\{Y_{2} \mid 2\right\}\right)
$$

(ii) j^{*} maps $E_{r}\left(A_{1}\left\{Y_{1} \mid 2\right\}\right)$ monomorphically to the BSS for $\prod K\left(\boldsymbol{Z}_{(2)} ; 4 n\right) \times$ $\prod_{\alpha(n)>1} K(\boldsymbol{Z} / 2 ; 4 n-2)$.

We first give an exact sequence of spectral sequences,

$$
Z / 2 \rightarrow E_{r}\left(A_{1}\left\{Y_{1} \mid 2\right\}\right) \otimes E_{r}\left(A_{2}\left\{Y_{2} \mid 2\right\}\right) \rightarrow E_{r}(\mathrm{BSTOP}) \rightarrow \hat{E}_{r} \rightarrow Z / 2
$$

satisfying (ii) and with $\hat{E}_{2}=E_{2}(\mathscr{T})$. From dimensional considerations and because $j^{*}\left(k_{n}\right)$ is an infinite cycle and $j^{*}\left(p_{n}\right)=0$, it follows that this sequence splits:

$$
E_{r}(\mathrm{BSTOP})=\hat{E}_{r} \otimes E_{r}\left(A_{1}\left\{Y_{1} \mid 2\right\}\right) \otimes E_{r}\left(A_{2}\left\{Y_{2} \mid 2\right\}\right)
$$

Algebraic considerations lead to the pleasant fact that \hat{E}_{∞} is a polynomial algebra with one generator in each degree congruent to zero $\bmod 4$.

Since

$$
\hat{E}_{\infty}=E_{\infty}(\mathrm{BSTOP})=H^{*}(\mathrm{BSTOP}) / \text { Tor } \otimes Z / 2
$$

we see that $H^{*}(\mathrm{BSTOP}) /$ Tor is a polynomial algebra. In particular the $4 n$-dimensional primitives of $H_{*}(\mathrm{BSTOP}) /$ Tor are a copy of $\boldsymbol{Z}_{(2)}$.

We now employ a result of Morgan and Sullivan [8]. They construct a class $L_{n} \in H^{4 n}$ (BSTOP) whose rational reduction is the (inverse) Hirzebruch class when restricted to $H^{4 n}(\mathrm{BSO}: Q)$ and whose restriction to G/TOP is 8 ("surgery class"). Since the coefficient of p_{n} in the Hirzebruch class is $2^{\alpha(n)-1}$ (odd), it follows that

$$
2^{\alpha(n)-1} \cdot \tau_{*}\left(b_{n}\right)=8 \cdot \tau_{*}\left(s_{n}\left(a_{1}, \cdots, a_{n}\right)\right)
$$

(s_{n} is the Newton polynomial.)
This equation implies that $\tau_{*}\left(\gamma_{2} i\left(b_{n}\right)\right)$ is divisible by 2 unless $\alpha(n) \geqq$ $4+v(n)$, and from this one can inductively conclude that

$$
\hat{E}_{r}=E_{r}(\mathscr{T})
$$

References

1. W. Browder, Surgery on simply connected manifolds, Springer-Verlag, New York, 1972.
2. W. Browder, A. Liulevicius and F. P. Peterson, Cobordism theories, Ann. of Math. (2) 84 (1966), 91-101. MR 33 \#6638.
3. G. Brumfiel, I. Madsen and R. J. Milgram, PL characteristic classes and cobordism, Ann. of Math. (2) 97 (1973), 82-159.
4. D. Husemoller, The structure of the Hopf algebra $H_{*}(B U)$ over a $Z_{(p)}$-algebra, Amer. J. Math. 93 (1971), 329-349. MR 44 \#4074.
5. I. Madsen, Higher torsion in BSG (to appear).
6. I. Madsen and R. J. Milgram, On spherical fiber bundles and their PL reductions (to appear).
7. R. J. Milgram, Surgery with coefficients, Ann. of Math. (to appear).
8. J. Morgan and D. Sullivan, The transversality characteristic class and linking cycles in surgery theory, Ann. of Math (to appear).
9. D. Sullivan, Geometric topology. Part I, Mimeographed notes, M.I.T., Cambridge, Mass., 1972.

Department of Mathematics, Aarhus University, Aarhus, Denmark

Department of Mathematics, Stanford University, Stanford, California 94305

[^0]: AMS (MOS) subject classifications (1970). Primary 57A70, 57C20.
 ${ }^{1}$ Partially supported by NSF contract 29696.

