BULLETIN OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 80, Number 5, September 1974

ON SEQUENCES OF MEASURES

BY KLAUS BICHTELER
Received January 28, 1974

Dieudonné [2] has shown that a sequence (u,) of regular Borel measures
on a compact space X converges weakly, i.e., on all bounded Borel func-
tions, if only it converges on all open Baire sets. The result continues to
hold if the u, are weakly compact linear maps from C(X) to a locally
convex vector space F. Such maps have an integral extension to all bounded
Borel functions ¢, and | ¢ du, converges provided fo du, converges for
all open sets O [4], [5]. The Vitali-Hahn-Saks theorem is the set-function
analogue of these results.

In this note the analogue of these results for sequences (u,) of measures
with values in an arbitrary topological vector space F will be proved.
In order to deal with set functions and linear maps at the same time, we
work in the setting of Daniell-Stone, and consider linear maps u: Z—F,
where Z is a vector lattice of real-valued functions on a set X closed under
the Stone-operation ¢—¢Al, an “integration lattice’” [1]. The examples
we have in mind are (1) Z=C%(X), where X is locally compact, (2)
A=¢&(F), the step functions over a clan of sets on X, (3) Z=c", (4)
Z=1".1f an additive set function u: €—F on the clan € is given, we extend
it by linearity to (%) and are in the present situation.

We denote by 05 the collection of sets in X whose indicator is majorized
by a function in Z and is the supremum of a sequence in %... 05 consists
of the open dominated Z%-Baire sets [1]. We shall assume that every func-
tion in Z is bounded and vanishes off some set in @5. Examples (1)-(4)
have this property.

Then Z is the union of the normed spaces Z[0]={¢ € Z:¢$=0 off O}
under the supremum norm || |, and is given the inductive limit topology.
X is given the initial uniformity and topology for the functions ¢:X—
R ($ € #), under which it is precompact. Its completion X can be iden-
tified with the set of all Riesz-space characters t: Z—R having t($Al)=
t($)Al. Subtracting from X the zero character, one obtains the locally
compact spectrum X of #. X is dense in X, and the extensions ¢ of ¢ € %
to X, the Gelfand transforms, are dense in C%(X). For the details see
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A function is called Z-Baire if it belongs to the smallest family con-
taining # and closed under pointwise limits of sequences. The vector
lattice of bounded %-Baire functions vanishing off some set of 05 is
denoted by %#°.

A linear map u: Z—F will be called extendible! if there is an extension
§-du: B5—F? satisfying Lebesgue’s dominated convergence theorem.
For this to be the case it is evidently necessary that

(C) p: #—F is continuous,

(S) for every sequence (¢,) in £, decreasing pointwise to zero, u(¢,)—
0in F, and

(G) for every sequence (¢,) in Z#, such that 32, ¢, € RS, u($,)—0
in F.3

If u is the extension by linearity of a set function u, on a clan, then
(C) signifies that u, has finite semivariation. (S) is automatically satisfied
if X is locally compact in the Z-topology, by Dini’s theorem. When F
is locally convex then (G) is equivalent to u being weakly compact, as
Grothendieck has shown [4], [S]. Given (C), (G) is evidently automatically
satisfied when F is a C-space, i.e., any sequence in F, all of whose finite
partial sums form a bounded set, necessarily converges to zero.

(©), (S), and (G) together are also sufficient for the extendability of u.
To see this, let D be a fundamental system of translation-invariant
pseudometrics defining the topology of F. Let .%‘f denote the suprema of
sequences in #Z,. Forde D and h e %? define

ug(h) = sup{d(u($)):h = $ € X},
and for an arbitrary f :X—>E+ let

pi(f) = inf{uy(h): f < h e #7}.

One checks easily (but slightly laboriously) just as in [1], [3], [S] that
uq has all the defining properties of a weak upper gauge [1] except positive-
homogeneity. The latter is replaced by ug (A¢)—0 as 10 for each ¢ € Z,.
Routine arguments then show that the closure of Z# in RX, LUR, ud),
is a complete space under the pseudometric f~u;(|f]) in which point-
wise a.e. convergent and majorized sequences converge in mean, and which
therefore contains 5. Therefore

R = LR, w) =N LR, 1y)
deD

1 Cf. [3].

2 F denotes the completion of F.

3 It is sufficient to require (G) only for sequences (¢,) in £, with sum in 2% and with
mutually disjoint carriers [¢,>0].
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and u has an extension, continuous with respect to the collection of trans-
lation invariant pseudometrics u}, d € D, from all of LY (%, u) to F
(see footnote 2).

Following is the main result. In it 5# denotes the set of all bounded
functions h:X—R, whose carrier [1>0] belongs to ¢5 and that are
continuous on [A>0].

THEOREM. Let (u,) be a sequence of extendible maps from X to F. If
lim,_,., | hdu, exists in F for all he ¥, then u.,(¢)=lim,_ . p,($)
(p € R) defines an extendible measure p:A—F, and | fdu,=
lim,_, , § fdu, for allfe %°.

To prove this, we shall consider below the map U: #—cy into the
space cp of convergent sequences in F that is given by U(é)(k)=u,(¢).
U is evidently extendible if ¢z is given the topology p of pointwise con-
vergence. The proof of the Theorem will consist essentially in showing that
U is extendible if ¢y is given the topology u of uniform convergence.
A major step will be to prove that p has the Orlicz property for u.

If o< are two linear Hausdorff topologies on a vector space E then
¢ is said to have the Orlicz property for = provided every sequence (&,)
in E, all of whose subsequences are o-summable to an element of E,
necessarily 7-converges to zero. If (F, 7) is complete then such a sequence
(and all of its subsequences) is actually r-summable; indeed, for any
increasing sequence (n(k)), &= ke £ is a sequence, all of whose
subsequences are o-summable in E, and hence 7—lim,_ , &;=0. By
Cauchy’s criterion, (&,) is summable in (F, 7).

PROPOSITION.  Let F be a Hausdorff topological vector space, and denote
by cp the space of convergent sequences in F. The topology p of pointwise

convergence has the Orlicz property for the topology u of uniform conver-
gence on cg.

Proor. Let (f,) be a sequence in cp all of whose subsequences are
p-summable to an element of c¢z. We have to show that, for every con-
tinuous translation-invariant pseudometric ¢ on F,

do (fn) = sup d(f,(k), 0)
keN

converges to zero as n—o0. Viewing (f,) as a sequence in the Hausdorff
completion of the pseudometric space (F, d), we may assume that F is
actually complete and metrizable with translation-invariant metric d.

For each n € N set f,(c0)=lim,_,, f,(k). We show first that f,(c0)—0
as n—o00. We proceed by contradiction and, extracting a subsequence,
assume that d(f,(c0))>c for all ne N and some ¢>0. Given an ¢>0,
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we define inductively two increasing sequences (K(i)) and (N(i)) in N such
that

™ d(f(k)) £ e27* for k £ K(i) and n = N(i),

d(fywk) — fyw(0)) < e27* for k = K(i + 1),

which is possible since f,,(k)—0 as n—oo for each k € N. By assumption,
the pointwise sum f=>3, fy(, belongs to c¢p and has a limit f(o0)=
limy,_,, f(k). Now,

d(f(OO) —;;fzvm(oo))

< d(F(00) =S KON + 2, Ao KU + 3, Ao KD —Fyia )

The first term on the right can be made smaller than ¢ by the choice of j,
and the two remaining terms are smaller than ¢ each by (*). Hence
d(fn(0))—0 as i—oo, after all. By the condensation argument above,
(fn()) is actually summable in the completion of F, and so are all of
its subsequences. Replacing f, by f,—f,(c0), we may therefore assume
that all the f;, belong to the space c% of nullsequences.

To show that f,—0 uniformly, we proceed by contradiction and,
extracting a subsequence if necessary, assume that d (f,)>c for all
n e N and some ¢>0.

We define again sequences (N(i)) and (K(i)) satisfying (*) (with f,(c0)=0
for all n € N) and set

(k) = fy(k) for K(i) < k < K(i + 1),
=0 for all other k.

Then d,(fnw,fva)<e2™ for all i€ N, and consequently (fiv)) is
pointwise summable to an element of c%. Indeed, we have

o0 o0 o0
D fivw =2 fvw + D (v — fliw) € %
i=1 =1 =1

in the pointwise topology. (Note that 22, (fy)—/f v)) exXists in the uni-
form topology of the complete space c%.) From the fact that the fiy,
have mutually disjoint carriers, it is obvious that d(f;))—0 as i—o0.
Hence ¢, (f n:))—0 as i—co, after all.

We are now ready to prove the Theorem. This is done by showing that
the map U: #—cy satisfies (C), (S), and (G) and thus is extendible; the
statements of the Theorem are then evidently true.

For (C), it suffices to prove the continuity of the restrictions of U to
Z[0], O € 0;. If one of them is not, then there are ¢,c Z[0] with
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l#nllo=2"" and d(U(¢$,))>c for some d € D and some ¢>0. This is
absurd, though, since (U(¢,)) is a sequence in c all of whose subsequences
are p-summable to an element of ¢z, whence a contradiction to the proposi-
tion.

The proof of (G) is similar. Let (¢,) be a sequence in %, with disjoint
carriers [$,>0] (see footnote 3) and sum in 5. Then for any subset 4
of N, Dnea b€, and D,cs U($)={ Dnea ¢, dU € c exists in the
pointwise topology of cz. By the Proposition, lim,_,, U(¢,)=0 in the
uniform topology of cz.

It remains to prove (S). Let (¢,) be a decreasing sequence in 9?+ with
pointwise limit zero. We consider the Gelfand-Bauer transform U %—»cF,
defined for every Gelfand transform @ of an element € Z by U()=
U(¢). From Dini’s theorem and the local compactness of X, U satisfies (S).
Since it ev1dently satisfies (C) and (G) as well, it is extendible.

Let g=inf,.y $,. Then g is an upper semicontinuous Baire function of
compact support on X, and by the dominated convergence theorem

f g d0 =1im 0(3,) = lim U(4,)

n—r 0o 7= 00

exists in cz. For any k € IV, we have

( f . dU)(k) = lim U($,)() = lim () = 0,

and so lim,_,,, U(¢,)=0, as claimed.

REMARKS. (1) The proof shows that the u,, - * -, u,, are actually uni-
formly extendible in the sense that if a majorized sequence (f,) in %#°
(or in LY(Z, U)) converges pointwise to some f; then § f,, du,—f f du, in F
uniformly in k=1, - - -, c0; indeed, we have [ f, dU—f fdU in cj.

(2) If Fis locally convex, it suffices to require that [, du, converges in F
for all O € 05, and the same conclusion holds. The proof of this by Thomas
[5]* for the case that X is locally compact in the Z-topology can be easily
adapted to our setting using the Gelfand-Bauer transform. Turning then
to the special case where Z is the step functions over a clan %, one obtains
the following result: If (u;) is a sequence of c-additive F-valued set
functions of finite semivariation, then [ fdu,—(fdu, for all fe %5
and some o-additive set function u, provided lim;_., fo du; exist in
F for every set O that is a subset of a set of € and is the countable union
of sets in € (when F is locally convex), or provided that limy_,, | ¢ du,
exist in F for every bounded function ¢ that vanishes off a set of € and
is a countable linear combination of indicators of sets in €.

4 Our proof uses essentially Thomas’ technique.
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(3) Let E be a Banach space, and let Z®E denote the collection of
functions x—3 é,(x)&, (b, € #, &, € E, the sum finite), equipped with
the obvious inductive limit topology [1]. The arguments given above can
be adapted to prove the following. Let y;: ZQE—F be a sequence of
extendible maps such that f /4 du, converges in F for each bounded
Z-Baire function A#:X—E such that [h0] € 05, and such that % is
continuous on [A5#0]. Then there exists an extendible map u,,: ZQE—~F
such that [ fdu,—f fdu,, for all bounded E-valued #-Baire functions
vanishing off some set of 05, and py, * * * , u, is uniformly extendible.®
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