ON SEQUENCES OF MEASURES

BY KLAUS BICHTELER

Received January 28, 1974

Dieudonné [2] has shown that a sequence (μ_n) of regular Borel measures on a compact space X converges weakly, i.e., on all bounded Borel functions, if only it converges on all open Baire sets. The result continues to hold if the μ_n are weakly compact linear maps from C(X) to a locally convex vector space F. Such maps have an integral extension to all bounded Borel functions ϕ , and $\int \phi \ d\mu_n$ converges provided $\int_O d\mu_n$ converges for all open sets O [4], [5]. The Vitali-Hahn-Saks theorem is the set-function analogue of these results.

In this note the analogue of these results for sequences (μ_n) of measures with values in an arbitrary topological vector space F will be proved. In order to deal with set functions and linear maps at the same time, we work in the setting of Daniell-Stone, and consider linear maps $\mu\colon \mathcal{R}\to F$, where \mathcal{R} is a vector lattice of real-valued functions on a set X closed under the Stone-operation $\phi\to\phi\wedge 1$, an "integration lattice" [1]. The examples we have in mind are (1) $\mathcal{R}=C^{00}(X)$, where X is locally compact, (2) $\mathcal{R}=\mathcal{E}(\mathcal{C})$, the step functions over a clan of sets on X, (3) $\mathcal{R}=c^{00}$, (4) $\mathcal{R}=l^{\infty}$. If an additive set function $\mu\colon \mathcal{C}\to F$ on the clan \mathcal{C} is given, we extend it by linearity to $\mathcal{E}(\mathcal{C})$ and are in the present situation.

We denote by \mathcal{O}_0^S the collection of sets in X whose indicator is majorized by a function in \mathcal{R} and is the supremum of a sequence in \mathcal{R}_+ . \mathcal{O}_0^S consists of the open dominated \mathcal{R} -Baire sets [1]. We shall assume that every function in \mathcal{R} is bounded and vanishes off some set in \mathcal{O}_0^S . Examples (1)–(4) have this property.

Then $\widehat{\mathcal{R}}$ is the union of the normed spaces $\mathscr{R}[O] = \{\phi \in \mathcal{R}: \phi = 0 \text{ off } O\}$ under the supremum norm $\| \|_{\infty}$ and is given the inductive limit topology. X is given the initial uniformity and topology for the functions $\phi: X \to \overline{R}$ ($\phi \in \mathscr{R}$), under which it is precompact. Its completion \widehat{X} can be identified with the set of all Riesz-space characters $t: \mathscr{R} \to R$ having $t(\phi \wedge 1) = t(\phi) \wedge 1$. Subtracting from \widehat{X} the zero character, one obtains the locally compact spectrum \widehat{X} of \mathscr{R} . X is dense in \widehat{X} , and the extensions $\widehat{\phi}$ of $\phi \in \mathscr{R}$ to \widehat{X} , the Gelfand transforms, are dense in $C^{00}(\widehat{X})$. For the details see [1].

AMS (MOS) subject classifications (1970). Primary 46G10.

A function is called \mathcal{R} -Baire if it belongs to the smallest family containing \mathcal{R} and closed under pointwise limits of sequences. The vector lattice of bounded \mathcal{R} -Baire functions vanishing off some set of \mathcal{O}_0^S is denoted by \mathcal{R}^S .

A linear map $\mu: \mathcal{R} \to F$ will be called extendible if there is an extension $\int d\mu: \mathcal{R}^S \to \tilde{F}^2$ satisfying Lebesgue's dominated convergence theorem. For this to be the case it is evidently necessary that

- (C) $\mu: \mathcal{R} \rightarrow F$ is continuous,
- (S) for every sequence (ϕ_n) in \mathcal{R}_+ decreasing pointwise to zero, $\mu(\phi_n) \rightarrow 0$ in F, and
- (G) for every sequence (ϕ_n) in \mathcal{R}_+ such that $\sum_{n=1}^{\infty} \phi_n \in \mathcal{R}^S$, $\mu(\phi_n) \rightarrow 0$ in F.³

If μ is the extension by linearity of a set function μ_0 on a clan, then (C) signifies that μ_0 has finite semivariation. (S) is automatically satisfied if X is locally compact in the \mathcal{R} -topology, by Dini's theorem. When F is locally convex then (G) is equivalent to μ being weakly compact, as Grothendieck has shown [4], [5]. Given (C), (G) is evidently automatically satisfied when F is a C-space, i.e., any sequence in F, all of whose finite partial sums form a bounded set, necessarily converges to zero.

(C), (S), and (G) together are also sufficient for the extendability of μ . To see this, let D be a fundamental system of translation-invariant pseudometrics defining the topology of F. Let $\mathcal{R}_{\uparrow}^{S}$ denote the suprema of sequences in \mathcal{R}_{+} . For $d \in D$ and $h \in \mathcal{R}_{\uparrow}^{S}$ define

$$\mu_d^*(h) = \sup\{d(\mu(\phi)): h \ge \phi \in \mathcal{R}_+\},\$$

and for an arbitrary $f: X \rightarrow \overline{R}_+$ let

$$\mu_d^*(f) = \inf\{\mu_d^*(h): f \le h \in \mathcal{R}_{\uparrow}^S\}.$$

One checks easily (but slightly laboriously) just as in [1], [3], [5] that μ_d^* has all the defining properties of a weak upper gauge [1] except positive-homogeneity. The latter is replaced by $\mu_d^*(\lambda\phi) \rightarrow 0$ as $\lambda \downarrow 0$ for each $\phi \in \mathcal{R}_+$. Routine arguments then show that the closure of \mathcal{R} in \mathbb{R}^X , $\mathcal{L}^1(\mathcal{R}, \mu_d^*)$, is a complete space under the pseudometric $f \rightarrow \mu_d^*(|f|)$ in which pointwise a.e. convergent and majorized sequences converge in mean, and which therefore contains \mathcal{R}^S . Therefore

$$\mathcal{R}^S \subset \mathcal{L}^1(\mathcal{R},\mu) = \bigcap_{d \in D} \mathcal{L}^1(\mathcal{R},\mu_d^*)$$

¹ Cf. [3].

² \tilde{F} denotes the completion of F.

³ It is sufficient to require (G) only for sequences (ϕ_n) in \mathcal{R}_+ with sum in \mathcal{R}^s and with mutually disjoint carriers $[\phi_n > 0]$.

and μ has an extension, continuous with respect to the collection of translation invariant pseudometrics μ_d^* , $d \in D$, from all of $\mathcal{L}^1(\mathcal{R}, \mu)$ to \tilde{F} (see footnote 2).

Following is the main result. In it \mathcal{H} denotes the set of all bounded functions $h: X \to \mathbb{R}_+$ whose carrier [h>0] belongs to \mathcal{O}_0^S and that are continuous on [h>0].

Theorem. Let (μ_n) be a sequence of extendible maps from $\mathscr R$ to F. If $\lim_{n\to\infty}\int h\ d\mu_n$ exists in F for all $h\in\mathscr H$, then $\mu_\infty(\phi)=\lim_{n\to\infty}\mu_n(\phi)$ $(\phi\in\mathscr R)$ defines an extendible measure $\mu_\infty:\mathscr R\to F$, and $\int f\ d\mu_\infty=\lim_{n\to\infty}\int f\ d\mu_n$ for all $f\in\mathscr R^S$.

To prove this, we shall consider below the map $U: \mathcal{R} \to c_F$ into the space c_F of convergent sequences in F that is given by $U(\phi)(k) = \mu_k(\phi)$. U is evidently extendible if c_F is given the topology p of pointwise convergence. The proof of the Theorem will consist essentially in showing that U is extendible if c_F is given the topology u of uniform convergence. A major step will be to prove that p has the Orlicz property for u.

If $\sigma \subset \tau$ are two linear Hausdorff topologies on a vector space E then σ is said to have the *Orlicz property* for τ provided every sequence (ξ_n) in E, all of whose subsequences are σ -summable to an element of E, necessarily τ -converges to zero. If (F, τ) is complete then such a sequence (and all of its subsequences) is actually τ -summable; indeed, for any increasing sequence (n(k)), $\xi'_k = \sum_{i=n(k)}^{n(k+1)} \xi_i$ is a sequence, all of whose subsequences are σ -summable in E, and hence $\tau - \lim_{k \to \infty} \xi'_j = 0$. By Cauchy's criterion, (ξ_n) is summable in (F, τ) .

PROPOSITION. Let F be a Hausdorff topological vector space, and denote by c_F the space of convergent sequences in F. The topology p of pointwise convergence has the Orlicz property for the topology p of uniform convergence on p.

PROOF. Let (f_n) be a sequence in c_F all of whose subsequences are p-summable to an element of c_F . We have to show that, for every continuous translation-invariant pseudometric d on F,

$$d_{\infty}(f_n) = \sup_{k \in \mathbb{N}} d(f_n(k), 0)$$

converges to zero as $n\to\infty$. Viewing (f_n) as a sequence in the Hausdorff completion of the pseudometric space (F, d), we may assume that F is actually complete and metrizable with translation-invariant metric d.

For each $n \in N$ set $f_n(\infty) = \lim_{k \to \infty} f_n(k)$. We show first that $f_n(\infty) \to 0$ as $n \to \infty$. We proceed by contradiction and, extracting a subsequence, assume that $d(f_n(\infty)) > c$ for all $n \in N$ and some c > 0. Given an $\epsilon > 0$,

we define inductively two increasing sequences (K(i)) and (N(i)) in N such that

(*)
$$d(f_n(k)) \leq \varepsilon 2^{-i} \quad \text{for } k \leq K(i) \text{ and } n \geq N(i),$$
$$d(f_{N(i)}(k) - f_{N(i)}(\infty)) < \varepsilon 2^{-i} \quad \text{for } k \geq K(i+1),$$

which is possible since $f_n(k) \to 0$ as $n \to \infty$ for each $k \in \mathbb{N}$. By assumption, the pointwise sum $f = \sum_{i=1}^{\infty} f_{N(i)}$ belongs to c_F and has a limit $f(\infty) = \lim_{k \to \infty} f(k)$. Now,

$$\begin{split} d\bigg(f(\infty) - \sum_{i=1}^{j} f_{N(i)}(\infty)\bigg) \\ & \leq d(f(\infty) - f(K(j))) + \sum_{i=j}^{\infty} d(f_{N(i)}(K(j))) + \sum_{i=1}^{j-1} d(f_{N(i)}(K(j)) - f_{N(i)}(\infty)). \end{split}$$

The first term on the right can be made smaller than ε by the choice of j, and the two remaining terms are smaller than ε each by (*). Hence $d(f_{N(i)}(\infty)) \rightarrow 0$ as $i \rightarrow \infty$, after all. By the condensation argument above, $(f_n(\infty))$ is actually summable in the completion of F, and so are all of its subsequences. Replacing f_n by $f_n - f_n(\infty)$, we may therefore assume that all the f_n belong to the space c_F^0 of nullsequences.

To show that $f_n \rightarrow 0$ uniformly, we proceed by contradiction and, extracting a subsequence if necessary, assume that $d_{\infty}(f_n) > c$ for all $n \in \mathbb{N}$ and some c > 0.

We define again sequences (N(i)) and (K(i)) satisfying (*) (with $f_n(\infty) = 0$ for all $n \in N$) and set

$$f'_{N(i)}(k) = f_{N(i)}(k)$$
 for $K(i) < k < K(i + 1)$,
= 0 for all other k .

Then $d_{\infty}(f'_{N(i)}, f_{N(i)}) < \varepsilon 2^{-i}$ for all $i \in N$, and consequently $(f'_{N(i)})$ is pointwise summable to an element of c_F^0 . Indeed, we have

$$\sum_{i=1}^{\infty} f'_{N(i)} = \sum_{i=1}^{\infty} f_{N(i)} + \sum_{i=1}^{\infty} (f_{N(i)} - f'_{N(i)}) \in c_F^0$$

in the pointwise topology. (Note that $\sum_{i=1}^{\infty} (f_{N(i)} - f'_{N(i)})$ exists in the uniform topology of the complete space c_F^0 .) From the fact that the $f'_{N(i)}$ have mutually disjoint carriers, it is obvious that $d_{\infty}(f'_{N(i)}) \rightarrow 0$ as $i \rightarrow \infty$. Hence $c_{\infty}(f'_{N(i)}) \rightarrow 0$ as $i \rightarrow \infty$, after all.

We are now ready to prove the Theorem. This is done by showing that the map $U: \mathcal{R} \rightarrow c_F$ satisfies (C), (S), and (G) and thus is extendible; the statements of the Theorem are then evidently true.

For (C), it suffices to prove the continuity of the restrictions of U to $\mathcal{R}[O]$, $O \in \mathcal{O}_0^S$. If one of them is not, then there are $\phi_n \in \mathcal{R}[O]$ with

 $\|\phi_n\|_{\infty} \leq 2^{-n}$ and $d_{\infty}(U(\phi_n)) > c$ for some $d \in D$ and some c > 0. This is absurd, though, since $(U(\phi_n))$ is a sequence in c_F all of whose subsequences are p-summable to an element of c_F , whence a contradiction to the proposition.

The proof of (G) is similar. Let (ϕ_n) be a sequence in \mathscr{R}_+ with disjoint carriers $[\phi_n>0]$ (see footnote 3) and sum in \mathscr{R}^S . Then for any subset A of N, $\sum_{n\in A}\phi_n\in\mathscr{H}$, and $\sum_{n\in A}U(\phi_n)=\int\sum_{n\in A}\phi_n\,dU\in c_F$ exists in the pointwise topology of c_F . By the Proposition, $\lim_{n\to\infty}U(\phi_n)=0$ in the uniform topology of c_F .

It remains to prove (S). Let (ϕ_n) be a decreasing sequence in \mathscr{R}_+ with pointwise limit zero. We consider the Gelfand-Bauer transform $\hat{U}: \hat{\mathscr{R}} \to c_F$, defined for every Gelfand transform $\hat{\phi}$ of an element $\phi \in \mathscr{R}$ by $\hat{U}(\hat{\phi}) = U(\phi)$. From Dini's theorem and the local compactness of \tilde{X} , \hat{U} satisfies (S). Since it evidently satisfies (C) and (G) as well, it is extendible.

Let $g = \inf_{n \in \mathbb{N}} \hat{\phi}_n$. Then g is an upper semicontinuous Baire function of compact support on \hat{X} , and by the dominated convergence theorem

$$\int g \ d\hat{U} = \lim_{n \to \infty} \hat{U}(\hat{\phi}_n) = \lim_{n \to \infty} U(\phi_n)$$

exists in c_F^{\sim} . For any $k \in \mathbb{N}$, we have

$$\left(\int g \ d\hat{U}\right)(k) = \lim_{n \to \infty} U(\phi_n)(k) = \lim_{n \to \infty} \mu_k(\phi_n) = 0,$$

and so $\lim_{n\to\infty} U(\phi_n)=0$, as claimed.

REMARKS. (1) The proof shows that the $\mu_1, \dots, \mu_{\infty}$ are actually uniformly extendible in the sense that if a majorized sequence (f_n) in \mathscr{R}^S (or in $\mathscr{L}^1(\mathscr{R}, U)$) converges pointwise to some f, then $\int f_n d\mu_k \to \int f d\mu_k$ in \tilde{F} uniformly in $k=1, \dots, \infty$; indeed, we have $\int f_n dU \to \int f dU$ in $c_{\tilde{F}}$.

(2) If F is locally convex, it suffices to require that $\int_O d\mu_k$ converges in F for all $O \in \mathcal{O}_0^S$, and the same conclusion holds. The proof of this by Thomas [5]⁴ for the case that X is locally compact in the \mathscr{R} -topology can be easily adapted to our setting using the Gelfand-Bauer transform. Turning then to the special case where \mathscr{R} is the step functions over a clan \mathscr{C} , one obtains the following result: If (μ_k) is a sequence of σ -additive F-valued set functions of finite semivariation, then $\int f d\mu_k \to \int f d\mu_\infty$ for all $f \in \mathscr{R}^S$ and some σ -additive set function μ_∞ provided $\lim_{k\to\infty} \int_O d\mu_k$ exist in F for every set O that is a subset of a set of \mathscr{C} and is the countable union of sets in \mathscr{C} (when F is locally convex), or provided that $\lim_{k\to\infty} \int \phi d\mu_k$ exist in F for every bounded function ϕ that vanishes off a set of \mathscr{C} and is a countable linear combination of indicators of sets in \mathscr{C} .

⁴ Our proof uses essentially Thomas' technique.

(3) Let E be a Banach space, and let $\mathscr{R} \otimes E$ denote the collection of functions $x \to \sum \phi_i(x) \xi_i$ ($\phi_i \in \mathscr{R}$, $\xi_i \in E$, the sum finite), equipped with the obvious inductive limit topology [1]. The arguments given above can be adapted to prove the following. Let $\mu_k \colon \mathscr{R} \otimes E \to F$ be a sequence of extendible maps such that $\int h \ d\mu_k$ converges in F for each bounded \mathscr{R} -Baire function $h: X \to E$ such that $[h \neq 0] \in \mathscr{O}_0^S$, and such that h is continuous on $[h \neq 0]$. Then there exists an extendible map $\mu_\infty : \mathscr{R} \otimes E \to F$ such that $\int f \ d\mu_k \to \int f \ d\mu_\infty$ for all bounded E-valued \mathscr{R} -Baire functions vanishing off some set of \mathscr{O}_0^S , and μ_1, \dots, μ_∞ is uniformly extendible.

REFERENCES

- 1. K. Bichteler, *Integration theory*, Lecture Notes in Math., vol. 315, Springer-Verlag, Berlin and New York, 1973.
- 2. J. Dieudonné, Sur la convergence des suites de mesures de Radon, An. Acad. Brasil. Ci. 23 (1951), 21-38. MR 13, 121.
- 3. J. Gamlen, A Stone-Daniell vector integral and applications, Yale University, New Haven, Conn., 1973. (Preprint.)
- 4. A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173. MR 15, 438.
- 5. E. Thomas, L'intégration par rapport a une mesure de Radon vectorielle, Ann. Inst. Fourier (Grenoble) 20 (1970), 55-191.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AT AUSTIN, AUSTIN, TEXAS 78712

⁵ For the terminology, see [1].