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0. Introduction. In this announcement we abstract a theory for 
generalized inverses (G.I.) of a linear operator between two algebraic 
linear spaces, or topological vector spaces. Our approach includes as 
special cases all previously published approaches to G.I.'s of matrices 
and linear operators in Hubert spaces. In addition it provides new results 
for G.I.'s in the case of normed spaces, and develops the first treatment of 
G.I.'s of arbitrary linear operators between two topological vector 
spaces. The explicit transformation of G.I.'s under changes of projectors 
is new even in the case of matrices. For a survey of various definitions and 
results on G.I.'s of linear operators, see Nashed [7] and the references 
cited therein; see also the papers by Erdelyi [3], Erdelyi and Ben-Israel 
[4], Deutsch [2], and Koliha [6], which appeared after [7]. Other recent 
references are cited in [8]. 

The proofs of these results and a detailed account of the various special 
cases alluded to will appear elsewhere [8]. 

1. Algebraic and projectional properties. Let V and W be vector 
spaces over the same (real or complex) field, and let L be a linear map 
from V into W. The range and null spaces of L are denoted by ^?(L) and 
i/T(L) respectively. A linear map M from W into V such that LML=L is 
called a partial (or inner) inverse of L. Every linear map has a partial inverse. 
If M is a partial inverse of L, then LM and ML are idempotent, 0t(ML)<^ 
@(M), &(LM)=@(L), JT{M)^Jf(LM), and JT{ML)^jr(L). A 
partial inverse M determines a particular complementary subspace to 
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^(L) in V, and a particular complementary subspace to &(L) in W\ 
in fact we have the following algebraic direct sum decompositions : 

V = J^(L) + M(ML) and W = 9t(L) + ^(LM). 

Conversely, we next show that selecting different complementary subspaces 
gives rise to different partial inverses and we relate these partial inverses 
to each other. In order to do this, we first characterize all of the linear 
idempotents whose range is a given subspace S of a vector space V (see 
also Sobczyk [9]). Let A(V) denote the set of all linear maps from V 
into V, let 

0>s = {Pe A(V):P2 = Pand 0t{P) = S), 
and 

s/8 = {Ae A(V):@(A) <= S c JT(À)). 

PROPOSITION 1.1. The set 3?s is an affine manifold, and the subspace 
parallel to &$ is s/s. 

THEOREM 1.2* Let M be a partial inverse of L and write P=I—ML 
and Q=LM, where I is the identity map. LetP' and Q' be linear idempotents 
with &{?')=JT{L) and &(Q')=â$(L). Then 

M' = (ƒ + ƒ>_ P')M(I -Q + Q') 

= (21 -ML- P')M(2I -LM+ Q') 

is a partial inverse of L which satisfies I—M'L=P' and LM' = Q'. On the 
other hand, if M and M' are two partial inverses of L, then (M—M')L e 
^JT(L)

 and L(Mr—M) e srf^{Ly Also, M—MLM is invariant under 
change of projectors. 

We next consider the relation MLM=M. A linear map M.W-+V 
which satisfies this relation is called an outer inverse of L. Every linear 
map has a nonzero outer inverse, and each such inverse M induces the 
following decompositions: V=^(M)+Ar(ML), W=,V(M) + @(LM). 

If M is both an inner inverse and an outer inverse of L, then L and M 
are called algebraic generalized inverses (A.G.I.) of each other. In this 
case V=^(L) + @(M) and W=M(L)+Jr(M). Every linear map has 
an A.G.I. ; in particular if M is any partial inverse then MLM is an A.G.I. 

Let P and Q be the (algebraic) projectors corresponding to the algebraic 
direct sum decompositions V=J^(L)-\-JS( and W~0t(U)\-£f, respec
tively. In other words, Pand Q are linear idempotent maps with 0l(P)= 
JT(L), Jr(P)=^, ât(Q)=âl(L) and J^(Q)=Sf. Also, let i and j 
denote injections i\JK->V and j\M(L)-^W. Then there exists a unique 
A.G.I, of L (with respect to the choice of P and Q), denoted by L§ Q. 
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The construction is illustrated by the following commutative diagram: 

r L# 

>K 
I-P 

( ^ designates the restriction of an operator to the indicated domain.) 
The following two questions arise naturally in this context: 
(a) If we change P and Q to some new (algebraic) projectors P'=P+A 

and Q' = Q+B9 where &(P')=&(P)=J^(L), and M(Q) = @(Q')=@(L), 
how is L%,Q, related to LftQ ? 

(b) Given two A.G.I.'s L# and ZJ, they induce four linear idempotent 
maps Q=LL#, P = / - L # L , Ô ' = L L \ a n d P W - L l L . How are the pairs 
{ƒ>, Q) and {P',Q'} related? 

These questions are answered in the following theorem which plays 
a central role in unifying the various approaches to generalized inverses 
in the algebraic context, as well as in the topological considerations of 
§2. 

THEOREM 1.3. (a) Given P=P2:V-+Jr(L) and Q = Q2:W->&(L), 
there is a unique solution M of the system LX=Q, XL=I~P, andXLX=X. 
This solution is an A.G.I, of L. Any other A.G.I, (with respect to P' and Q') 
is given by L$,Q,=(2I-ML--P')M(2I-LM+Q'). 

(b) Using the notation of question (b) above, the following relations hold: 
P'=P+A9 and Q' = Q+B, where A e ^jr^L) and B e ^^(L)l equivalently 
P ' = P + ( Z / - Z ^ ) L and Q' = Q+L(lJ-L#). 

2. Topological considerations (in Hausdorff spaces). We first replace 
the algebraic vector space W by a topological vector space Y. Consider 
L G A(V, Y) with the property that the closure of the range (<^(L))~~ has 
a topological complement in 7, and let g be a (continuous) projector 
whose range is (M(L))~. Write @(M)=&{L)®J^(Q) and consider L as 
being in A(V, &(M)). We take M to be a partial inverse of L which satisfies 
LM=Q on @(Af)=âl(L)®Jf(Q). This can be done by Theorem 1.2. We 
call such an M a right-topologicalpartial inverse (abbreviated as R-T.P.I.) 
of L, and we use the notation M=L}=Ll>Q. We consider L\ as a trans
formation whose domain ^ ( M ) = ^ ( L ) © ^ T ( 0 is contained in the space 
7, and point out that the domain depends on the choice of the projector 
Q whose range is (^?(L))~~ unless L is an operator whose range is closed 
in Y. 
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THEOREM 2.1. Let L e A(V, Y) have the property that (â#(L))~~ has a 
topological complement, and let Q and Q' be two {continuous) projectors 
with range (&(L))~~~. Let M=Ll>Q and M'=LI,Q> be two corresponding 
R-TP.I:S. 

(a) 9(M)=@(M') if and only if9t(Q'-Q)^0t(L). 
(b) If M{L) is closed then every R-T.P.I, is defined on all of Y. 
(c) If 3%{t) is not closed, and if Y is Hausdorff and locally convex, 

then for any y0 ^ (0t(Lff~ we can select Q and Q' so that y0 e@(M) and 

The case of a left-topological partial inverse is more complicated. We 
consider here a linear operator L whose domain £iï(L) lies in a topological 
vector space X and whose range is considered to be in an (algebraic) 
vector space W. Here 3>(L) is not necessarily dense in X. We introduce a 
notion of decomposability which is weaker than a related notion used in 
Hubert spaces by Hestenes [5], Arghiriade [1] and others. 

DEFINITION 2.2. Let Ss(L)^X. We say L is decomposable with respect 
to the projector P eJ?(X), the space of continuous operators on X, if 
Jr(L)a&(P) and if PxeJf{V) for all xeQs{L\ In this case we call 

<gP(L) = 3{L) n JT(P) 

the carrier of L with respect to P. 
We point out here that L may be decomposable with respect to one 

projector but not with respect to another projector whose range contains 
Ar(L). In particular if S){L) is dense in a Hubert space H, it may be the 
case that L is not decomposable with respect to the orthogonal (self-
adjoint) projector but that L is decomposable with respect to some other 
(nonorthogonal) projector. 

DEFINITION 2.3. If 2(L)a Zand L, considered as being in A(^(L), W), 
has a partial inverse M with the property that ML has an extension to a 
projector I-Pe^(X) with St{Py=> {^iXW (the closure being taken 
in X), we say that M is a left-topological partial inverse of L (abbreviated 
as L-T.P.L). We will use the notation M = L J = L / P to denote a L-T.P.I. 

THEOREM 2.4. If M=L}P> then L is decomposable with respect to 
P, @(L)=Jr(L)(&(£p(L), and L can be extended to an operator L with a 
closed null space which also has M as a L-T.P.I. If &(I-P)=(&(ML))~~, 
then L is densely defined. 

THEOREM 2.5. If 3){L)<^X and L is decomposable with respect to P, 
then L has a L-T.P.I. 

We finally get to the case where T is a linear operator whose domain 
lies in a topological vector space X and whose range lies in a topological 
vector space Y. 
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DEFINITION 2.6. If U is both a L-T.P.I. and a R-T.P.I. of T, and UTU= 
U9 we say that Uis a topological generalized inverse (T.G.I.) of T, and we 
write U=*T*=TPtQ. 

THEOREM 2.7. IfTis decomposable with respect to P and if there exists 
a (continuous)projector Q onto (âê(T))~~, then T has a T.G.L T*=TPQ 

which satisfies 

2{F) = 0t(T) 0 Jf[Q\ 3t(F) = VP(T), JTip) = JT(Q), 

T*Tx=x-Pxfor xe3)(T), and TT*y=Qy for allye@(P). 

X = &(P) e ^T(P) 7 = (9t(X)T~® Jf{Q) X = #(ƒ>) 0 JV(P) 

u u u 
S(r> = ^K(r) e ^p(r) -£> ^(r) 0 ^r(g) -̂ > ^r(r) 0 ̂ P(r) 

4i«- # 4i» 
^ p ( D = ^ ( r ) n oV(p) > gt{X) > VP(T) = âtçPT) 
The next theorem gives conditions that will yield a continuous general

ized inverse. Recall that a continuous linear operator T.X-+Y with 
£&(T)=X is a topological homomorphism if the image of every open set 
in X is open in T(X) in the induced topology. 

THEOREM 2.8. If T\X->Y is a topological homomorphism whose null 
space has a topological complement in X and whose range has a topological 
complement in Y9 then T has a generalized inverse (defined on all of Y) 
which is itself a topological homomorphism. 

COROLLARY 2.9. If X and Y are complete metrizable topological vector 
spaces, then any T e S^(X, Y) such that ~W(T) is complemented in X and 
M(T) is complemented in Y has a generalized inverse which is a topological 
homomorphism. 
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