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BEST APPROXIMATION IN L\T) 

BY J.-P. KAHANE1 

0. The address I gave in Minneapolis was entitled Hereditary properties 
of metric projections. The general topic is explained in §§1 and 2, together 
with some recent examples. The subsequent sections develop the last part 
of the talk concerning L}{T). 

§1 consists of general results on metric projection from a Banach space 
X to a closed subspace Y; that is, best approximation of each x e l b y a 
unique y e Y. We are interested in the case where such an operator exists 
(in general, it is not linear). 

§2 deals with hereditary properties (in other words, preservation of 
classes of functions) when X=LP(T) and Y is a closed subspace invariant 
under translation. Several classes of functions are considered. The question 
originated with H. S. Shapiro (1952); recent contributions are due to 
Adamyan, Arov and Krein (1969), Carleson and Jacobs (1972), H. S. 
Shapiro (1973) and myself (1973). 

§3 considers the case X=L1(T); it is taken from [12]. 
§§4, 5, and 6 develop [13]. §4 deals with the metric projection from 

L1 to H1 (already defined by Doob in 1941). The oldest result—and maybe 
the best—on hereditary properties in this case goes back to F. Riesz 
(1920): trigonometric polynomials are mapped into trigonometric poly
nomials. Preservation of properties by Toeplitz operators is considered, 
and some precise results are obtained on the classes defined in §2. In 
relation with division of analytic functions, this topic has been considered 
by B. I. Korenbljum and Y. S. Korolevic (1970), B. I. Korenbljum 
(1971), F. A. Samoyan (1971), Y. P. Havin (1971), M. Rabindranathan 
(1972), B. I. Korenbljum and Y. M. Faivysevskiï (1972), Y. E. Katznelson 
(1972), N. A. Sirokov (1972), and E. M. Dyn'kin (1973). 

§5 deals with the metric projection from L1 to the subspace of l/2i>+1-
periodic functions in L1, a topic already considered by Steiner (1837); 
the subject belongs to elementary geometry and most questions are open 
when v>2. 
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§6 deals with the metric projection from L1 to the subspace of 1/2^+1-
periodic functions in H1 and contains only very partial results. 

1. Metric projections. Here is the general setting. Z i s a metric space, 
Y a subset of X. For each x e l w e consider the set 

0>(x) = {yeY\d(x,y) = d(x, 7)}, 

that is, the subset of Y (maybe empty) where the function d(x, •) attains 
its infimum. Some authors call £P(x) the metric projection of x on 7. 
The elements of £P(x) are the elements of best approximation to x in 7. 
In this paper we are interested in cases where £P(x) consists of exactly one 
point for each x e X. This point (the unique element of best approximation 
to x in Y) will be denoted by Px. We consider the mapping P from X 
to 7, and that is what we now call metric projection. 

We restrict outselves to X a Banach space and Y a closed subspace. 
Here are the most classical examples. 

(a) X=Cr(I), the space of real-valued continuous functions on a com
pact interval / , and Y consists of all polynomials of degree ^n. This is 
the case considered and beautifully worked out by Cebysev.2 

(b) X is a Hubert space. Then P is the ordinary (linear) projection. 
(c) X is uniformly convex (=uniformly rotund). Then P exists and is 

continuous. This holds for X=LP(JU) (ju is a measure, and 1 < / ? < O O 

strict inequalities). 
(d) When X is not uniformly convex, it may happen that ^(x) is 

empty or contains more than one point for some x. It may also happen 
that P exists and is not continuous (Lindenstrauss, see [27]). 

Duality methods in best approximation were introduced about 25 
years ago and proved very useful (see [2] for a history of the topic, 
[9] and [27] for applications). The main tools are the following formulae, 
simple consequences of the Hahn-Banach theorem. 

Let X* denote the dual space of X; we have 

(1.1) d(x, Y) = inf \\x — y\\ = max |(w, x)|, 
y u 

where y e 7, u belongs to the unit sphere of X* and u_[_ 7, and max 
means that the supremum is reached. 

If X = E * , the dual of some Banach space S, 

(1.2) d(x, 7) = min \\x — y\\ = sup |(w, x)|, 
y u 

2 Let us remark that the work of Cebysev begins in 1853, while the Weierstrass theo
rem on polynomial approximation is dated 1885. The theory of best approximation hap
pens to be older than the usual approximation theory. Let us remark also that 
Cebysev deals with the difficult case (X not uniformly convex). 
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where y e Y, u belongs to the unit sphere of H and w_[_ 7, and min means 
that the infimum is reached. 

Formula (1) is used when X=LP(JU) ( 1 ^ / K O O ) ; thenX*=L*(>) with 
(l//?) + ( % ) = l . Formula (2) is used when X=L™(p) with E=L1(v). 
The dual problem is to study the set of u where the supremum is attained. 

From now on X will consist of (classes of) functions defined on T, the 
circle equipped with the Haar (=Lebesgue normalized) measure. For 
each x e l , w e write the Fourier series of x 

oo 
x ~ 2 *(n)*n On(0 = exp lirint). 

— 00 

Let us describe the situation for X=LP(T) and 7 = the Hardy class Hp, 
i.e. the subspace of LP(T) which consists of all functions y with y(n)=0 
for fl<0. If p=2, P is the mapping je->y defined by 

00 

0 

If/? = 1, P exists and is continuous; the existence had been proved by 
Doob already in 1941 [8], and the continuity derives from the "pseudo 
uniform convexity" of H1, proved by D. J. Newman in 1963 [19]. If 
/?= oo, SPx is never empty but may contain several points; 0>x consists of 
only one point if x is a continuous function (x e C) and therefore also if 
x e C+Hœ; moreover the dual problem has solutions (that is, there exist 
some u where the supremum in (2) is attained) [22], [5], Since C+H00 

is a Banach space,3 the metric projection from X=C+Hco to H™ exists. 
Ifp^zl, 2, oo, P exists and is continuous. 

2. Hereditary properties. Suppose P exists. We can look for properties 
which are preserved by P; that is, for subsets A of X such that PAczA. 
We call such a property hereditary for P. Apparently the question was 
raised by H. S. Shapiro in his thesis (1952); he proved that analyticity is 
hereditary when X=C+Hco, 7=77°° and when X=L1(T), Y=HK 

Working with X=LP(T) ( l^ /?<oo) , we shall consider only closed 
subspaces invariant under translation. Therefore Y=L\{T), the closed 
subspace of LP(T) which consists of all y of the form y^^^€A yQ^)ex 
where A is some subset of Z (set of all integers). In the case X~C+H^', 
we shall be satisfied with Y=Hco. 

Already the case/?=2 has some interest. Here the projection P:x-+y 
is defined by 

3 See [24]. Actually C+jtf00 is a Banach algebra. 
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that is, y=xlA (1A is the indicator function of A defined on Z). A subclass 
of L2(T) defines an hereditary property if and only if 1A is a "multiplier" 
of this class. 

Here are the classes we shall consider in connection with the metric 
projection from LP to LA (from now on we drop T). 

—Lr (wi th r> /0 ; 
—C (continuous functions) ; 
—Aw, that is the class of all continuous functions ƒ such that 

(2.1) sup | / ( t + ft) - f(t)\ = 0(co(/i)) (h -> 0), 
t 

where œ(h) is a positive concave function of h>0, with limh_+0a)(h)=0; 
—Aa (Lipschitz class of order a), that is Aw when co(/*)=Aa ( 0 < a < l ) ; 
—A* (Zygmund class) consisting of all continuous ƒ such that 

(2.2) sup | f{t + h)+ f(t - h) - 2/(01 = 0(h) (h -* 0); 

—A^ (the notation will be clear in a moment) is Aa when 0 < a < l , 
A* when a = 1, and consists of all functions/having continuous derivatives 
ƒ ' , • • • ,f{v) with ƒ{v) e A™ when a = v + oc', r a n integer and 0 < a ' ^ l ; 

—A^, A£ obtained by considering functions in LP instead of continuous 
functions, and norms in Lr instead of sup-norms in (2.1) and (2.2): 

ƒ e Al means \\f(-+h)-f(-)\\r=0(a>{h)); 
ƒ e A ; ( 0 < O C < 1 ) means \\f{-+h)-f{-)\\r=0(h«); 
feA{ means \\f(.+h)+f(—h)-2f(-)\\r=0(li); 
f e Ar

v+a, means fM e Ar
a,,f

M denned as a distribution; 
—C°° (infinitely differentiable functions); 
—C({Mn}), class of all ƒ e Cœ such that log||/<n>|L^ log Mn+0(n), 

where {Mn} is a given positive sequence. For example, C({n !}) is the analy
tic class, and C({(n!)y}) ( y > l ) is called the Gevrey class of index y. We 
shall restrict ourselves to the case 

(2.3) log Mn+1 = log Mn + 0(n); 

then C({Mn}) is closed under differentiation, and 

(2.4) ƒ e C({Mn}) o logll/<»>||, ^ log Mn + 0(n) 

(because | |/<»>||,^| |ƒ<" )L^||/«n , | | ,+c||/<-+1>|| t). 

—^l 2 (p) , where p stands for a positive increasing sequence {pn} 
(n^.0) extended by p~n=pn for « < 0 ; by definition 

fe&l\p) means ^\f(n)\*Pn<co. 
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Before going further, let us mention the relation between the classes 
A^, A^ and the best approximation by trigonometric polynomials in the 
//-norm ( l^rrgoo) . We write 3~n for the class of all trigonometric 
polynomials of order ^ 2 n , and Vn for the de la Vallée Poussin kernel 
defined by Vn=\ on [ -2 n , 2W], Vn=0 outside [-2n + 1 , 2W+1], and Vn 

linear on each of the intervals [-2n + 1 , - 2 W ] , [2n, 2W+1]. Finally we write 
wn—(jo(2~~n) and, if the condition 

00 

(2.5) 2 0Jn < °° 
1 

is fulfilled, co* will denote any concave function such that 

(2.6) œ* ^ 2 2~5™n-ô + 2 w»+i-

The following implications hold : 

(2.7) (a) => (b) o (c) => (d) o (e) => (f), 

where (a), (b), (c), (d), (e), and (f) are defined by: 

(a) ƒ e A; , 
(b) i n f ^ || f-p\\r=0(a>n), 
(c) \\f-Vn*f\\r=0(a>n), 
(d) \\(Vn+i-Vn)*f\\r=0(a>n), 
(e) f=ZZ.if„ \\fJr=0(con),fn e<Tn+1 and / M =0on [ - 2 - 1 , 2 " - 1 ] , 
(f) (if (2.5) holds ƒ e A; . . 
Though this is well known, let us sketch the proof: (a)=>(b) by taking 

Jackson sums (the Jackson kernel is the square of the Fejer kernel up to 
a multiplicative constant). (b)=>(c) because Vn*p=p and \\Vn * (ƒ—ƒ>) II r = 
WVJJf-pW^Wf-pl. (c )^(b) because Vn *fe^n+1 and con^2mn+1. 
(c)=>(d) is obvious. (d)=>(e) by taking / M = ( ^ n - » /

n _ 1 ) *ƒ. (e)=>(d) 
because (Vn+1-Vn) *f=(Vn+1-Vn) * (fn+fn+1+fn+s). (e)=>(f) by S. 
Bernstein's theorem on derivatives of trigonometric polynomials, using 

||/„(- + 2-*) - / B ( - ) | | r ^ 2^2«+ 1 | | / J | r for n <> v, 

|| ƒ„(• + 2 - ) - /„(OH, < 2 || fn\\r for n £ , . 

For A„ the situation is simpler, and we have the equivalence 

(2.8) (a) <=> (b) o (c)o (d) o (e), 

(a) ƒ 6 A;, 
(b) i n f ^ || f-p\\r=0(2-n*), 
(c) U-Vn*f\\r=0(2-™), 
(d) l l ( ^ + i - F J * / | | r = 0 ( 2 — ) , 
(e) / = 2 n = 1 ƒ., Il/«llr=0(2-""X ƒ . £ ^ + i . / « = 0 on [ - 2 - 1 , 2"-1]. 
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This holds for l ^ r ^ o o and 0<oc<oo. The proof is still easier. Another 
equivalent definition is given in [26]. In the case where r= oo and 0<oc< 1, 
(a)=>(b) is due to Jackson, (b)=>(a) to S. Bernstein; for a = 1, ( a )o (b ) is 
due to Zygmund. 

The problems of heredity of properties we consider are the following: 
(1) Given A c Z , l^p^oo, such that the metric projection P of Lv on 
UK exists, which are the above classes preserved by PI (2) In case a class is 
not preserved, into which larger class is it mapped? 

In the next sections these problems will be handled in detail forp=l . 
The case p=2. Let us look briefly at the situation for p=2; then P 

exists and is linear for all A. 

(2.9) All classes A2
a, C({Mn}), ^l\p) are preserved by P whatever A 

may be [26]. 

(2.10) C is preserved by P if and only if A is a finite union of co set s of 
subgroups of Z up to a finite set. This is a theorem of Helson [11]. 

(2.11) A^ is preserved by P if and only if 

2(?«+iW-^»(*))«; 
AeA 

0(1) (n -> oo) [29]. 

The same holds for A*. The condition is satisfied if the intersection of A 
with each dyadic interval [ -2 n + 1 , -2W] or [2n, 2n+1] is the difference 
A\B of two sets A and B (A^B), and both A and B are disjoint unions of 
at most K cosets of subgroups of Z, where K= K(A) does not depend on 
n. It is not clear whether this is necessary as well as sufficient. 

(2.12) Lr (2 < r < oo ) is preserved whenever A is a union of dyadic blocks of 
the form [ -2 n + 1 , - 2 n ] or [2n, 2n+1] (Littlewood-Paley, see [30]). This is 
far from necessary. 

(2.13) In case A=iV={0, 1, 2, • • •}, we have the projection of ' L2 on H2, 
and the situation is well known: all classes Lr (2<r<oo) , A^ ( l ^ r ^ o o ) , 
a > 0 , C({Mn}), ^l2(p) are preserved; U° and C are not preserved; Aw is 
mapped into C if (2.5) holds, and this is a best condition; moreover, AM 

is mapped into Aw*. 

The casep =oo. Let us consider now X=C+Hco, Y^H™. The following 
theorem is due to Carleson and Jacobs [3] (H. S. Shapiro [25] for C({nl}); 
see also Adamyan, Arov and Krein [1]). 

(2.14) The classes A™ are preserved (proved for a not integral, probably 
also for a integral). If, in addition to (2.3), the sequence (l/w)log Mn— 
log n is increasing, the class C({Mn}) is preserved. C is not preserved. If 
(2.5) holds, Aœ is mapped into C, and this is a best condition. 
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The proof uses properties of analytic functions in a quite elaborate 
way. 

The case p^ 1, 2, oo. The metric projection exists for each A. There are 
essentially three positive results on heredity. 

(2.15) Whatever A, the class A£ is mapped into A£/p if 0<oc^2 and 
Kp<2, and into A£/3/ z / 0 < a ^ 2 andp>2, l / / ?+ l / / /= l . 

(2.16) If A=N (metric projection of Lp on Hv), and r>p, Lr is pre
served. 

(2.17) If A=N, analytic functions are mapped onto piecewise analytic 
functions. (2.15) is due to H. S. Shapiro [26]. (2.16) is due to L. Carleson 
[3]. (2.17) (for rational functions) was stated in [18] and proved in [22]. 

The main negative result (personal communication of H. S. Shapiro) is 

(2.18) If A=iV, there exists a trigonometric polynomial x=ae_2+be_1 

such thaty=x+e_2(l+e1)
2lv. 

Therefore, there is no hope of extending (2.13) or (2.14) if 2<p< oo and 
generally when 2jp is not integral. 

The casep=l. We shall see later that we have only to consider the cases 
A=N, A=(2p+l)Z (p integer) and A=(2p+l)N. The answer to the 
question whether a given class is preserved under the metric projection 
from L1 to L\ is given in the following table: 

A = iV 

U (1 < r < oo ) yes 

C, L00 no 

A a (0 < a < 1) yes 

Aa (oc ^ 1) yes 

C({MJ) yes 

A = 3Z 

yes 

yes 

yes 

no 

no 

A = 5Z,7Z, • • • 

yes 

yes 

no 

no 

no 

A = 3N, 5N, • • • 

yes 

no 

? 

? 

? 

The following statements will be proved in the next sections. 

(2.19) In case A=7V, all classes U (1 <r< oo), Ar
a (1 ^ r ^ oo), C({Mn}), 

&l\p) are preserved', the class of all trigonometric polynomials of order 
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^N (N given) is preserved; L00 and C are not preserved; AM is mapped 
into C if (2.5) holds, and this is a best condition; moreover, Aw is mapped 
into Aw*; more generally, Ar

œ is mapped into Ar
œ* (1 ^ r ^ oo). 

(2.20) In case A=(2v + l)Z, U, C, L°° are preserved, Aa (aï>l) is not 
preserved, A a ( 0 < a < l ) is preserved when v=l, Aa ( 0 < a < l ) is mapped 
into Aa /2 when v^.2. 

(2.21) In case A=(2v+1)N, U ( l < r < o o ) is preserved, L00 and C are 
not preserved. 

3. Metric projection from L1 to L\. In order to avoid trivialities, 
we suppose A?£ 0 , A ^ Z . 

We have the following characterization. 

(3.1) The metric projection from L1 to L\ exists if and only if A is an 
infinite arithmetical progression with an odd difference. 

In other words, A is obtained from one of the typical cases A=N, 
A = (2i>+l)Z, A=(2i>+l)yV using translation or symmetry. 

PROOF OF (3.1). We use (1.1) with X=L\ Y=L\, X*=L™. We write T 
for the set of x G X such that ||x|| =d(x, Y): 

x G Vo3u e L00, ii i . L\, N L = 1, (u, x) = \\x\\. 

Let us write A ' = Z \ A and Â' = —A'; then ueU°, u±_L\ becomes 
u G L%. On the other hand (u, x)=\\x\\ means ux=\x\ almost everywhere. 
Therefore 

(3.2) x eT<=>3u e L^, l|w||oo = 1> wx = |x| a.e. 

Uniqueness holds (that is, card ^ x ^ l for each x e l ) if and only if 
Xx G T, x2 G T, X!—x2 G L\ imply Xi=x2. Moreover, if uniqueness holds 
for A, it holds for —A and for every translate of A as well. 

Observe that each positive function x is in Y if 0 G A' (take u= 1). 
Suppose O G A ' , n G A, —ne A. Both functions x x =2 and x 2 =2 — 

en—e_n are positive, and their difference is in L\. Therefore uniqueness 
does not hold. The same is true by translation whenever we have Ax e A, 
A 2 G A , (A!+A2)/2 G A'. If uniqueness holds and A has more than one 
point, choose two points Xx, À2 in A with |A2—Ax| minimum. Then |A2—AJ 
is odd, and it is easy to check that A is an arithmetical progression with 
difference |A2—Xx\. 

Suppose that A is finite; using a translation if necessary, suppose O G A 
and A c [\—N, N—\]. Then u(t)= sign sin lirNt belongs to L~, (because 
0(0)=0 and u(n)=0 if» $ NZ). Since u • it=\u\ and (-w) • (w- l ) = | w - 1 | , 
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the functions xx = u and x2 = u—\ are in T a n d ^ — x 2 = l is in L\. Therefore 
uniqueness in V does not hold. 

We have proved that a necessary condition for uniqueness is that A is 
an infinite arithmetical progression with an odd ratio. It remains to prove 
that the metric projection exists in the three typical cases. It will prove 
convenient to consider A = A r + = { l , 2 , - - - } and A=(2v+l)N+ instead 
of A=N and A=(2v + l)N. 

Case A=7V+. Then L\=Hl (functions in H1 with mean value 0) and 
L^f = Hco. Given x e L1, a compactness argument shows that there is at 
least one y E Hi such that \\x—y\\=d(x, Hi) (this uses that F. and M. 
Riesz theorem : each measure with spectrum in N+ is absolutely continu
ous). In order to prove uniqueness, suppose xeT and y G Hi; then, 
using u as in (3.2), we have 

ƒ I* - y\ ^ ƒ \<x - y)\ = ƒ | |x| - uy\ > ƒ | |x| - Re uy\ 

^f (W-Re^) = f|x|. 

If ||x— J/|| = ||JC|| we have equalities instead of g:. Since (1 — \u\)x=0 
a.e. the difference between the first integrals is J(l —|w|)|^|, and we have 

(i) (1 - \u\)y = 0 a.e., 

(3.4) (ii) Imuy = 0 a.e., 

(iii) \x\ ^ Re uy a.e., 

In the present case uy e Hl, and (ii) gives uy=0, therefore (using (i)) y=0. 
This proves uniqueness (Doob's theorem). 

Case A = (2^ + 1)Z. For any function x e L1, let us write 

(3.5) x,(t) = x(t + (jl(2v + 1))). 

Since y e L\ means that y1=y2=
:' * '=y2v+i=y> y E ^x means that 

( 

l /(2v+l) 2v+l 

2 K(0 ~ XOI at 

is as small as possible. We are led to an elementary problem: given 2v+\ 
points xl9 - - • , x2v+1 in the plane (we now write Xj instead of x,(0), prove 
that there exists a unique y e C such that 2 I*;— j l ls minimum. The exis
tence is obvious. To prove uniqueness, suppose 0 e 2Px and y e £Px. 
We have by (3.2), w ^ = | ^ | , K l< ; i , and ]>w,=0, a n d (3-4) r e a d s (0 
(1 — \uj\)y=§ for ally, (ii) l m t / , j = 0 for ally; these equalities can be 
understood for functions a.e., or for complex numbers (t being fixed). 
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If y7^0, all ui have modulus 1 (by (i)) and same argument (by (ii)); 
since 2 UJ contains an odd number of terms, 2 w^O. The contradiction 
gives y—0, therefore uniqueness. (There exist more elementary proofs.) 

Case A=(2v+l)N+. We keep the notation (3.5). Existence of a best 
approximation is proved as in the case A=N+. To prove uniqueness, 
suppose again O G ^ X and yeSPx. We have now by (3.2), ujxj = \xj\, 
and ^Uj = v e H°°. By (3.4(h)), lmvy=0; since vy e Hi, this implies 
vy~0, hence v=0 or y = 0. Arguing as before, we get y=0. 

This ends the proof of (3.1). Using (3.3), it is possible to prove that if 
\\x— y\\ — \\x\\ is small, \\y\\ is small. This gives 

(3.6) Whenever the metric projection from L1 to L\ exists, it is continuous. 

For more details we refer to [12], and also to §5. The analogous situ
ation was investigated by Domar [7] when LX(R) is considered instead of 
L\T). 

Now we shall proceed to prove (2.19), (2.20) and (2.21). 

4. The case A=N+. Toeplitz operators. In this section we write 
Pz for the linear mapping which takes any formal trigonometric series 
2-<x> anen into its "Taylor part" 2o° anen, and Pt for the mapping from 
2-oo anen t o 2-oo anen- When a trigonometric series is the Fourier series 
of a function, we identify the series and functions. 

Given x e L1 and y its metric projection on Hi, let is write g=x— y. 
Then g e F and, by (3.2), there exists u e H°°, ||w||oo = 1 » s u c n t n a t US= 

\g\ a.e. Taking squares, u2g2=gg; therefore u2g=g. Since u2eHœ, we 
have u2y e H\\ therefore Fl(u

2g)=Fl(u
2x). Everything will depend on the 

simple formulae 

(4.1) (i) Plg = P,x, (ii) P,g = P^x). 

In order to prove (2.19) it suffices to investigate the (linear) operators 
x-^P^ and x-^P^x). 

Given (peH™, I M L ^ l , the Toeplitz operator T9 is defined as 
x-^P^yx). The following theorem will contain both (2.13) and (2.19) 
(except for the "best condition" part). 

(4.2) The Toeplitz operator T^ preserves all classes Lr ( l < r < o o ) , 
K ( l ^ r ^ o o , 0<oc<oo), C({Mn}), &l\p). It maps Ar

w into A^* when 
(2.5) holds ( l ^ r ^ o o ) ; in particular, it maps A0) into C. It maps trigono
metric polynomials of order ^N into trigonometric polynomials of order 
<:N. 

The preservation of ^l2(p) is a theorem of Rabindranathan [20]. 
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PROOF OF (4.2). TJJ<=-Lr is obvious from PxL
r(^Lr (Riesz's theorem 

on conjugate functions). 
Let us prove that T9 is a contraction of 3Fl\p). For each integer v, 

\t\ZTv be the set of allp G L2 such that/(w)=0 for ritiv (nothing is assumed 
for n<0). Let x G L2 and z^T^x; 

J |z(n)|2 = inf \\z - p\\l = inf \\cpx - p||2 ^ inf | | ^ - ^| |2
2 

v # e y v 3?eyv 3G^"V 

^ i n f | | x - g | | l = 2 |x (n ) | 2 . 
Qeyv v 

Therefore 

J Pn |f(n)|2 = J (/°v - Pv-i) 2 l̂ (̂ )l2 

0 v=0 n=v 
oo oo oo 

^ 2 (* - pv-x) 2 i*(«)i2 = 2 /»» i^n)i2 

v=0 n=v 0 

(/o_i=0). This is Rabindranathan's inequality. 
This inequality together with (2.4) shows that each class C({Mn}) is 

preserved. 
Writing An=Pl(Vn+1— Vn)9 a look at the Fourier transforms give the 

equality 

(4.3) (Vn+1 - Vn) * Tçx = An * yX = Aw * (^(x - Fw_2 * x)). 

Now HA^Hi^S, therefore 

(4.4) \\(Vn+1 - Ktt) * T9x\\r <: 3 ||x - F„_2 * x||r. 

If x e A; (1 ̂ r < ; oo, 0 < a < oo), (4.4) together with (2.8) gives T^xe AJ. 
If x £ A r

w ( l ^ o o ) and co satisfies (2.5), then (4.4) and (2.7) give 
T>GA;*. 

The preservation of trigonometric polynomials of order ^ N is obvious 
by(4.1(ii)). 

This ends the proof of (4.2). In order to have (2.19), we shall have to 
prove that (2.5) is a best condition for PA^C. Before doing it, let us 
add a few remarks about (4.2). 

(1°) (4.4) together with (2.8) is an easy proof of the theorems PjAac: Aa 

( 0 < a < l ) (Privalov), P ^ c z A * (Zygmund) and P^^A^ when (2.5) 
holds [30, p. 121]. 

(2°) (4.2) applies to division of analytic functions in the unit disc by 
inner factors (case x=Pxx, |^| = 1, x(p=xcp'~1=Pl{x(p-~1)). It proves that 
division by an inner factor does not affect too much the nice properties 

file:///t/ZT
file:////cpx


1974] BEST APPROXIMATION IN LX{T) 799 

of boundary values. This question (preservation of properties by division 
by inner factors) was studied by V. P. Havin [10]; it is also the main 
purpose of [20], [6], [14], [16], [23], [28]. 

(3°) The preservation of C({Mn}) is almost obvious by looking at Fourier 
coefficients; it does not need the more refined result on !Fl\p). It includes 
preservation of analytic functions. 

Let us prove now that (2.5) is a best condition for PA^c: c , P being the 
metric projection from L1 to Hi. 

Suppose (2.5) does not hold. Then there exist two functions 

00 00 

(4.5) f(t) = 2 an c o s 2irnt, g(t) = 2 an s m 27rnf, 
o o 

such that g e Aw, ƒ ^ L°°, and moreover ƒ _ 0 [30, Chapter 5]. We choose 
x=f+y and y = — (f+ig—a0). Then y e Hl, y ^ L00, x e A(t} and (since 
x-y^0)y=Px. 

This ends the proof of (2.19). 
As a complement to (2.19), let us state and prove the following theorem 

(F. Riesz (1920) [21]). 

(4.6) Suppose x(n)=Oforn<-Nandx(-N)?±0 (N7>\). Then the func
tion g G L1 of minimal norm such that g{n)—x(n)for n^O is characterized 
as follows: g(t) = G(e2lTit) with 

K L M 

G(z) = cz~N Y\(z- ak) J ! (z - 6«) Yl (z ~ O , 
fc=l 1=1 m-=l 

(4.7) 0 < K | < 1 , |6J = 1, | c j > l , K + L + M^2N, 

c n (-«*) n (-*;) n c - o = ^ - ^ 
awd moreover M—K>Q, M—K—lpi is even, ak=ck

1 for l^k^K, 
cK+2j-i=cK+2j for l^j^/Lt, L=2À is even and b2j-1=b2j for 1 _ ^ A . 
In other words, all zeros of G(z) go in pairs, each pair consisting of either 
two inverse points (like ak and ck) or a double point in \z\ = 1 (like b2j_i—b2j, 
0r CK+2j-l~CK+2j)' 

PROOF OF (4.6). We already know that g is a trigonometric polynomial 
of order <:N (see (4.2) or (4.1(ii))). Since g(-N)=x(-N)^0, we have 
g(t) = G(e2wtt) with (4.7). Writing also u(t)=U(e27Tit), we can define 
U(z) as an analytic function in \z\<l and we have 

UHl). i/m^, n L ^ | n £fe n L ^ 
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(the equality for |z| = l follows from u2g—g and it holds for | z |< l by 
analytic continuation). Since U2(z) has no pole in | z | < l , each ak is a 
c"1; by a reordering of the cm9 ak=ck

1. Since U2(z) has double zeros in 
| z | < l , the other cm go in pairs, and by reordering ^ + 2 i _ i = ^ + 2 r This 
already implies that U(z)G(z) is real on |z| = l. Since it must be ^ 0 , the 
bz must go in pairs, say b2j_1=b2j. It is quite easy to check that the above 
conditions allow us to find u e H°° with ug=\g\; therefore J E T . 

This fine theorem was originally obtained by variational methods. 

5. The case A=(2v+l)Z. Steiner points. We first consider the 
following elementary problem. Given n points xu - - - , xn in C, study 
the set {ƒ} of points y e C such that 2?=i l^-~"J;l is minimum. 

Ifxi, • • • ,xn are on a line, say R, y is also on R. Assuming x^x^- • •_ 
xn> {y} = {xv+i} if n=2v+l and {y}=[xv, xv+1] if n=2v. This explains the 
role of odd numbers in our discussion. 

From now on, we consider only the case n=2v+l (though the case 
n=2v would be interesting too), and x=(xl9 • • • , xn) e Cn. If we think 
of x as an element of I1 (I, 2, • • •, n), that is we equip Cn with the norm 
||.x|| = 2 IxJ, we are looking for the metric projection of Z = / 1 ( l , 2, • • • , n) 
onto the subspace Y consisting of constants (the diagonal in Cn), We use 
the same letter y for a complex number and for the corresponding constant 
function, that is ( ƒ , ƒ , • • • , y). When y is the metric projection of x on Y, 
we write y=P0x. We already know from the discussion of (3.4) that P0 

exists, and we said in (3.6) that it is continuous. We shall prove a more 
precise result. 

(5.1) The mapping P0 is lipschitzian of order \ on every bounded subset 
ofC*. 

PROOF Suppose J P 0 X = 0 , P o y = j , \\x—x'\\<d. We want to bound 
||y ||. We have 

(5.2) ||JC - y\\ ^ \\x - x'll + ||x' - y\\ = ||x - x'|| + ||*'|| = ||x|| + 2d. 

Our estimate will follow from (5.2). 
Thinking of x as a function on (1,2, • • •, n), there exists u= (ul9 • • •, un) 

such that sup|w3| = l and ux — \x\. Moreover, (3.3) holds, integration 
meaning now summation on (1, 2, • • • , n). From (3.3) and (5.2) we obtain 

flM-M-[lM-Reio>|=2(5. 

Using the elementary inequality 

(HS(M+(JH* 
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withf=\x\ — uy, we get 

( f | I m uy\j <: 2ô(j\ \x\ - uy\ + f I |x| - Re uy^ 

^ 4 d f | x - y | ^ 4 ô ( | | x | | +2Ô). 

If x?±0, at least one \uj\ is 1, therefore | | ^ | | = /7 | J ; | ^2^ (Ó( | |X |H-2Ó) ) 1 / 2 . 

If x = 0 , (5.2) gives directly ||ty||^2(5. This proves (5.1). 
It is natural to ask whether P0 is actually lipschitzian of order 1, that is 

\\POX—PQX'\\^K\\X—X'\\, ^depending only on n. Here is an answer. 

(5.2) (i) P0 restricted to Rn is lipschitzian of order 1. (ii) Ifn = 3,P0 

defined on Cn is lipschitzian of order 1. (iii) Ifn = 5,7,-'-,P0 defined on 
Cn is not lipschitzian of order 1 and is not uniformly continuous. 

PROOF (i) is obvious, with K=n. 
(ii) If « = 3, and y=P0x, y is the so-called Steiner point of the triangle 

(xl9 x2, X}). If one angle is ^27r/3, y is the corresponding summit x,. 
Otherwise y is the point such that the half lines (yx^, (yx2)~*9 (yxz)~* 
make angles =27r/3. In order to see how y depends on x, let us fix xx 

and x2 and move JC3 in C. Then y moves in a domain bounded by two arcs 
of circles, and elementary geometry shows that y moves by less than s 
if x3 moves by less than (x/3/2)e. 

(iii) If « ^ 5 , let us fix xu • • •, xn_x and move xn in C. Then y moves in 
the domain I 2 i - 1 (xj—y)l\xj—y\\2^l. Let us suppose 

W—1 v 

(5.3) 2r^ = - 1 
1 \Xi 

and consider the curve L defined by l ^ i - 1 (xj—y)l\xj—y\\2=\. If x n = l 
we have P0x=0 and if we move xn to 1 + /a (a small), P0x (here considered 
as a complex number) moves on L. We shall show that the angle of L 
with the real axis at 0 is as small as we want by a convenient choice of 
xl9 • • • , xw_!. This will prove that P0 is not lipschitzian of order 1. 

Writing * ,=*J+ixJ , ƒ = ƒ + /ƒ', 

f(y', f) = 
fx,-y | 2

= (fxi-y'V (*fx!-f)? 
V | x , - j ; | l \ 4 \x,-y\) \4\Xi-y\)9 

an elementary computation gives 

I^(„,o,."f^, If.*.»-??*. 
2dy' i \Xj\ 2oy" i | x / 
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We choose all xs outside the domain x"2>(x'2+x"2)z/2, then 

| 3 / [ 0 , 0 ) / a / l < 2 ( / i - l ) . 

We choose xn^x on the curve y defined by x"2=(x'2+x"2)z/2 very near 0, 
with Xn_i<0, and the other Xj outside the unit disc | J K | ^ 1 , and such that 
(5.3) holds (the simplest way to do it is to move a regular polygon in the 
right position). Since |X»_I/JC-I | is very large, i(df(0, 0)/9y") is very large. 
That is what we wanted. 

We proved actually that P0 is not lipschitzian of order 1 on any ball 
||x|| <Rf Since P0 is linear, this means that P0 is not uniformly continuous. 
Therefore (5.2) is proved. 

A closer examination shows that P0 is not lipschitzian of order > § on 
any ball \\x\\ <R. It is not clear whether | is the best order in (5.1). 

6. The case A=(2i>+ l)N+. We intend to prove (2.21). 
Considering f((2v+ 1)0 and g((2v+l)t) instead off and g in (4.5), 

we see that C and L00 are not preserved. 
Suppose now x e Lr ( l < r < o o ) and y~Px. Using the notation 

Xj(t)~x(t+jl(2v+l))and the analogue for y and w, we have y—yi—9 • * = 
J W e Hl (x-y)u=\x-y\9 I N L ^ l , v=ux+ • • -+u2v+1 e H00. Therefore 

(6.1) lm yuj = Im xjui 

(6.2) Im yv = Im ^ xjuj E Lr, yv e HJ. 

From (6.2) and the F. and M. Riesz theorem, yv e Lr. Writing E for the 
set of t such that |t?(0l = i> w e have y\E e U. 

On the other hand, there exists a > 0 such that, whenever 2v+l unit 
vectors make angles smaller than a with a given line, the absolute value of 
their sum is larger than £. Therefore, it t $ E, at least one j satisfies 
|Im ^ I X ^ I s i n a and, using (6.1), we have also y(\ — \E)eLr. This 
completes the proof of (2.21). 

BIBLIOGRAPHY 

1. V. M. Adamjan, D. Z. Arov and M. G. Kreïn, Infinite Hankel matrices and general-
ized problems of Carathéodory-Fejér and F. Riesz, Funkcional. Anal, i Prilozen. 2 
(1968), no. 1, 1-19. (Russian) MR 38 #2591. 

2. R. C. Buck, Applications of duality in approximation theory, Approximation of 
Functions (Proc. Sympos. General Motors Res. Lab., 1964), Elsevier, Amsterdam, 
1965, pp. 27-42. MR 33 #4554. 

3. L. Carleson, Projections métriques de Lv sur Hp, C.R. Acad. Sci. Paris Sér. A-B 
276(1973), A1159-A1160. 

4. L. Carleson and S. Jacobs, Best uniform approximation by analytic functions. 
Ark. Mat. 10 (1972), 219-229. 



1974] BEST APPROXIMATION IN LX(T) 803 

5. K. deLeeuw and W. Rudin, Extreme points and extremum problems in Hu Pacific 
J. Math. 8 (1958), 467-485. MR 20 #5426. 

6. E. M. Dyn'kin, Smooth functions on plane sets, Dokl. Akad. Nauk SSSR 208 
(1973), 25-27 = Soviet Math. Dokl. 14 (1973), 18-21. MR 47 #2069. 

7. Y. Domar, On the uniqueness of minimal extrapolations, Ark. Mat. 4 (1960), 
19-29. MR 26 #6688. 

8. J. L. Doob, A minimum problem in the theory of analytic functions, Duke Math. J. 
8(1941), 413-424. MR 3, 76. 

9. P. L. Duren, Theory of Hv spaces, Academic Press, New York, 1970. 
10. V. P. Ha vin, The factorization of analytic functions that are smooth up to the 

boundary, Zap. Naucn. Sem. Leningrad. OtdeJ. Mat. Inst. Steklov. (LOMI) 22 
(1971), 202-205. (Russian) MR 44 #6970. 

11. H. Helson, Note on harmonic functions, Proc. Amer. Math. Soc. 4 (1953), 686-
691. MR 15, 309. 

12. J.-P. Kahane, Projection métrique de L\T) sur des sous-espaces fermés invariants 
par translation, Proc. Conf. on Approximation (Oberwolfach, 1971), INSM 1972. 

13. , Projection métrique dans LX{T), C. R. Acad. Sci. Paris Sér. A-B 276 
(1973), A621-A623. 

14. V. E. Katznelson, Zap. Nauön. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 
(LOMI) 30 (1972), 163-164. (Russian). 

15. B. I. Korenbljum, An extremal property of outer functions, Mat. Zametki 10 
(1971), 53-56 = Math. Notes 10 (1971), 456-458. MR 44 #5472. 

16. B. I. Korenbljum and V. M. Faivyâevskiï, On a class of contracting operators 
related to the divisibility of analytic functions, Ukrain. Mat. Z. 24 (1972), 692-695 = 
Ukrainian Math. J. 24 (1972), 559-561. 

17. B. I. Korenbljum and V. S. Korolevic, Analytic functions which are regular in a 
disc and smooth on its boundary, Mat. Zametki 7 (1970), 165-172=Math. Notes 7 
(1970), 100-104. MR 42 #4745. 

18. A. J. Macintyre and W* W. Rogosinski, Extremum problems in the theory of 
analytic functions, Acta Math. 82 (1950), 275-325. MR 12, 89. 

19. D. J. Newman, Pseudo-uniform convexity in H1, Proc. Amer. Math. Soc. 14 
(1963), 676-679. MR 27 #1817. 

20. M. Rabindranathan, Toeplitz operators and division by inner functions, Indiana 
Univ. Math. J. 22 (1972/73), 523-529. MR 46 #6085. 

21. F. Riesz, Vber Potenzreithen mit vorgeschriebenen Anfangsgliedern, Acta Math. 
42(1920), 145-171. 

22. W. W. Rogosinski and H. S. Shapiro, On certain extremum problems for analytic 
functions, Acta Math. 90 (1953), 287-318. MR 15, 516. 

23. F. A. Samojan, Division by an inner function in certain spaces ôf functions that 
are analytic in the disc, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 
22 (1971), 206-208 (Russian) MR 44 #6973. 

24. D. Sarason, Algebras of functions in the unit circle, Bull. Amer. Math. Soc. 79 
(1973), 286-299. 

25. H. S. Shapiro, Dissertation, M.I.T., Cambridge, Mass., 1952. 
26. , Regularity properties of the element of closest approximation, Trans. 

Amer. Math. Soc. 181 (1973), 127-142. 
27. Ivan Singer, Best approximation in normed linear spaces by elements of linear 

subspaces, Die Grundlehren der math. Wissenschaften, Band 171, Springer-Verlag, 
Berlin and New York, 1970. MR 42 #4937. 



804 J.-P. KAHANE 

28. N. A. Sirokov and S. A. Vinogradov, Zap. Naucn. Sem. Leningrad. Otdel. Mat. 
Inst. Steklov. (LOMI) 22 (1971), 209-211. (Russian) 

29. A. Zygmund, On the preservation of classes offunctionst J. Math. Mech. 8 (1959), 
889-895; erratum, ibid. 9 (1960), 663. MR 22 #8277. 

30. , Trigonometric series. Vol. I, 2nd rev. éd., Cambridge Univ. Press, New 
York, 1959. MR 21 #6498. 

MATHÉMATIQUES, BÂTIMENT 425, UNIVERSITÉ PARIS-SUD, 91 ORSAY, FRANCE 


