STUNTED PROJECTIVE SPACES AND THE J-ORDER OF THE HOPF BUNDLE BY S. FEDER AND S. GITLER Communicated by William Browder, December 17, 1973 Let FP^n be the projective space of dimension n over F where F=C, Q (Q stands for quaternions). We have the natural cofibrations $$FP^{m-1} \rightarrow FP^n \rightarrow FP^n_m$$ for $m \leq n$. Let H denote the Hopf bundle over FP^n . It is well known that the stunted projective space FP_k^{n+k} can be identified with the Thom space of kH over FP^n , this last being denoted by $(FP^n)^{kH}$. We study the stable homotopy types of stunted projective spaces FP_k^{n+k} for F=C and F=Q and obtain a complete classification. This classification is given in terms of the *J*-order of the Hopf bundle over FP^n . We denote by A_n the *J*-order of *H* over CP^n , and by B_n the *J*-order of *H* over QP^n . With this notation the results are: THEOREM A. The spaces $(CP^n)^{kH}$ and $(CP^n)^{kH}$ are of the same stable homotopy type if and only if one of the following conditions holds: $(n \neq 2, 4)^1$ - (i) $k-l\equiv O(A_n)$, - (ii) $k-l\equiv O(A_{n-1})$ and $k+l\equiv O(A_n)$, - (iii) $k-l \equiv O(A_{n-1})$ and $k+l+2(n+1) \equiv O(A_n)$. THEOREM B. The spaces $(QP^n)^{kH}$ and $(QP^n)^{lH}$ are of the same stable homotopy type if and only if one of the following conditions holds: - (i) $k-l\equiv O(B_n)$, - (ii) $k-l\equiv O(B_{n-1})$ and $k+l\equiv O(B_n)$. In [1] we have proven that the conditions in Theorem A are necessary and observed that $A_n = A_{n-1}$ for n odd which completed the classification AMS (MOS) subject classifications (1970). Primary 55D15, 55G25; Secondary 55F50. ¹ The cases n=2, 4 are also solved but the numerical conditions will not be stated here. for that case. To complete the classification we construct the necessary homotopy equivalences. We also prove² THEOREM C. The J-order B_n of the Hopf bundle over QP^n is given by $$v_2(B_n) = \max\{2n+1, 2j+v_2(j) \mid 1 \le j \le n\}$$ and $$v_p(B_n) = \max\{j + v_p(j) \mid 1 \le j \le 2n/(p-1)\}$$ when p is an odd prime. Here $\nu_p(r)$ is the highest exponent of the prime p which divides r. The proofs will appear elsewhere. ## REFERENCE 1. S. Feder and S. Gitler, Stable homotopy types of stunted complex projective spaces, Proc. Cambridge Philos. Soc. 73 (1973), 431. CENTRO DE INVESTIGACION Y ESTUDIOS AVANZADOS DEL IPN, APARTADO POSTAL 14-740, MEXICO 14, D.F. ² This result was announced by F. Sigrist and U. Sutter, *Cross-sections of symplectic Stiefel manifolds*, Notices Amer. Math. Soc. **19** (1972), A-214, but no proof has been published.