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Let FPn be the projective space of dimension n over F where F=C, Q 
(Q stands for quaternions). We have the natural cofibrations 

Fpm-1 _+ ppn _+ Fpn 

for m^n. 
Let H denote the Hopf bundle over FPn. It is well known that the 

stunted projective space FP£+k can be identified with the Thorn space of 
kH over FPn

9 this last being denoted by (FPn)kH. 
We study the stable homotopy types of stunted projective spaces FP%+k 

for F=C and F= Q and obtain a complete classification. This classification 
is given in terms of the /-order of the Hopf bundle over FPn. 

We denote by An the /-order of H over CPn, and by Bn the /-order of H 
over QPn. With this notation the results are: 

THEOREM A. The spaces (CPnfH and (CPn)lH are of the same stable 
homotopy type if and only if one of the following conditions holds: (n^2, 4)1 

(i) k-i=0(An), 
(ii) k-l=0(An_x)andk+l=:0(An), 
(iii) k-l=0(An_x) and k+l+2(n + l)=0(An). 

THEOREM B. The spaces (QPn)kH and (QPn)lH are of the same stable 
homotopy type if and only if one of the following conditions holds: 

(i) fc__/=o(^), 
(ii) k-l=0{Bn_x) and k+l=0(Bn). 

In [1] we have proven that the conditions in Theorem A are necessary 
and observed that An=An_x for n odd which completed the classification 

AMS{MOS)subject classifications (1970). Primary 55D15, 55G25; Secondary 55F50. 
1 The cases n—2,4 are also solved but the numerical conditions will not be stated here. 
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for that case. To complete the classification we construct the necessary 
homotopy equivalences. We also prove2 

THEOREM C. The J-order Bn of the Hopf bundle over QPn is given by 

v2(Bn) = max{2« + 1,2/ + v%(J) \l£j£n) 

and 
vp(Bn) = max{; + v9(J) | 1 £j <> 2n\{p - 1)} 

when p is an odd prime. 

Here vp(r) is the highest exponent of the prime/? which divides r. 
The proofs will appear elsewhere. 
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