## STUNTED PROJECTIVE SPACES AND THE J-ORDER OF THE HOPF BUNDLE

BY S. FEDER AND S. GITLER

Communicated by William Browder, December 17, 1973

Let  $FP^n$  be the projective space of dimension n over F where F=C, Q (Q stands for quaternions). We have the natural cofibrations

$$FP^{m-1} \rightarrow FP^n \rightarrow FP^n_m$$

for  $m \leq n$ .

Let H denote the Hopf bundle over  $FP^n$ . It is well known that the stunted projective space  $FP_k^{n+k}$  can be identified with the Thom space of kH over  $FP^n$ , this last being denoted by  $(FP^n)^{kH}$ .

We study the stable homotopy types of stunted projective spaces  $FP_k^{n+k}$  for F=C and F=Q and obtain a complete classification. This classification is given in terms of the *J*-order of the Hopf bundle over  $FP^n$ .

We denote by  $A_n$  the *J*-order of *H* over  $CP^n$ , and by  $B_n$  the *J*-order of *H* over  $QP^n$ . With this notation the results are:

THEOREM A. The spaces  $(CP^n)^{kH}$  and  $(CP^n)^{kH}$  are of the same stable homotopy type if and only if one of the following conditions holds:  $(n \neq 2, 4)^1$ 

- (i)  $k-l\equiv O(A_n)$ ,
- (ii)  $k-l\equiv O(A_{n-1})$  and  $k+l\equiv O(A_n)$ ,
- (iii)  $k-l \equiv O(A_{n-1})$  and  $k+l+2(n+1) \equiv O(A_n)$ .

THEOREM B. The spaces  $(QP^n)^{kH}$  and  $(QP^n)^{lH}$  are of the same stable homotopy type if and only if one of the following conditions holds:

- (i)  $k-l\equiv O(B_n)$ ,
- (ii)  $k-l\equiv O(B_{n-1})$  and  $k+l\equiv O(B_n)$ .

In [1] we have proven that the conditions in Theorem A are necessary and observed that  $A_n = A_{n-1}$  for n odd which completed the classification

AMS (MOS) subject classifications (1970). Primary 55D15, 55G25; Secondary 55F50.

<sup>&</sup>lt;sup>1</sup> The cases n=2, 4 are also solved but the numerical conditions will not be stated here.

for that case. To complete the classification we construct the necessary homotopy equivalences. We also prove<sup>2</sup>

THEOREM C. The J-order  $B_n$  of the Hopf bundle over  $QP^n$  is given by

$$v_2(B_n) = \max\{2n+1, 2j+v_2(j) \mid 1 \le j \le n\}$$

and

$$v_p(B_n) = \max\{j + v_p(j) \mid 1 \le j \le 2n/(p-1)\}$$

when p is an odd prime.

Here  $\nu_p(r)$  is the highest exponent of the prime p which divides r. The proofs will appear elsewhere.

## REFERENCE

1. S. Feder and S. Gitler, Stable homotopy types of stunted complex projective spaces, Proc. Cambridge Philos. Soc. 73 (1973), 431.

CENTRO DE INVESTIGACION Y ESTUDIOS AVANZADOS DEL IPN, APARTADO POSTAL 14-740, MEXICO 14, D.F.

<sup>&</sup>lt;sup>2</sup> This result was announced by F. Sigrist and U. Sutter, *Cross-sections of symplectic Stiefel manifolds*, Notices Amer. Math. Soc. **19** (1972), A-214, but no proof has been published.