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Let x: = (Xi) be nondecreasing. For a sufficiently smooth/, denote 
ty f\x: — (fi) ^ e corresponding sequence given by the rule 

fi : = /(i)(**) with; = y(0 := max {m | *<_w = *<}. 

Assuming that x is in [a, b] and that xt<xi+n9 all i,f\x is defined for 
every ƒ in the Sobolev space 

W^[a9 b] := {ƒ e C(l-1}[fl, b] I / - " abs. cont.; fin) e LJa> b]}. 

Karlin [6] discusses the problem of minimizing II/*10!!*, over all ƒ in 
U.(x9a): = {fEW{^)\f\x=a} for a given sequence a, and announces 
the following 

THEOREM (S. KARLIN [6]). Let x=(x<)?+r be a given nondecreasing 
sequence in the finite interval [a, b]9 with Xi<xi+n9 all i. Let a e Rn+r be 
given. Then U(x9 a) contains a perfect spline of order n with less than r 
(interior) knots, i.e., a function of the form 

(i) POO=SV+c [> + 2*2(-y(x - w~\ 

for some real constants a09 • • •, an__l9 and c9 and for a<£x<- • •<£*.__!<£ 
with k^r. Further, ||/(w)||oo takes on its minimum value over feU(x9 a) 
at this p. 

It is the purpose of this note to outline a simple proof of this theorem. 
For this, denote by [xi9 • • • , xi+n]f the «th divided difference of ƒ 

at the n+l points xi9 • • • , xi+n. Then [xi9 • • • , xi+n](f-g)=0 for all/, 
g G n O , a) and f=l , • • • , r. Further, it is well known (see e.g., [2]) that, 
for ƒ e W[n)[a9b]9 

Ja 
with 

^ ( 0 := M,,n(r)/n! := [x,, • • •, xi+w](- - OHC" - 1)! 

a (polynomial) J?-spline of order n having the knots xi9 • • • , x t+n. Hence, 
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with/0 any particular element of U(x9 a), II (x, a) is contained in 

(2) {ƒ e W^ | £ W ' ) ( / - /o)(M)(0 at = 0, t = 1, • • •, r). 

On the other hand, for every ƒ in the set (2), there exists a polynomial 
pf of degree < n s o that ƒ—pf e U(x, a), viz. the unique polynomial pf 

of degree <w for which 

PfVxjl^ ( / — /o)|<*,>;. 

Consequently, with the definition 

n(w)(x, a) := {g G LJi i , fc] | jVig = j W 0
w ) , i - 1, • • •, r}t 

it follows that 

(3) inf {||/<«>|L | /6 l l (* , a )} = înfdlgL | geTlM(x9a)}t 

and that w-fold differentiation maps the set of solutions of the left-hand 
minimization problem one-one and onto the set of solutions of the right-
hand minimization problem. Equation (3) can already be found in 
Favard's pioneering paper [3]. 

It remains to show that II(n)(jt, a) contains a function of constant 
absolute value and with less than r sign changes, and which solves the 
right-hand minimization problem in (3). For this, we use the idea, ap­
parently due to M. G. Krein [7], of looking at constrained minimization 
dually, as a problem of finding norm preserving extensions for a given 
linear functional, and then using representation theorems for such 
functional. Consider the linear functional A0 defined on 

Sn>x := spanC^, • • • , <pr) s Lx[a, b] 
by the rule 

K<P : = f <K0/ow)(0 dt9 all q> G Sn,„. 
Ja 

Then, identifying L^[a9 b] with the continuous dual of Lx[a, b] in the 
usual way, II (n)(x, a) is seen to coincide with the collection of all extensions 
of A0 to a continuous linear functional on Lx[ay b]. Hence 

inf{||glL | g G n<*>(*, a)} = inf{||A|| | X e (L^a, b])\ l\sn„ = *o} = Poll 

by the Hahn-Banach theorem, settling existence of a solution as well. 
Let y) be an element of SntX of unit 1-norm at which XQ takes on its norm, 
i.e., let 

V G sn,x> IMIi = 1, AoV = sup AoçVMIi, 
<f>eSn.X 
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and set h : = (A0^)signum y). If g is any point in II(n)(*, a) at which the 
infimum is taken on, then 

llgIL = Poll = hv> =jn ^ IMIi llgIL = llsll. 

and equality must therefore hold in Holder's inequality. This implies 
that 

g(0 = HSL signum v(f) = h(t) a.e. on {t \ xp(t) * 0}. 

Hence, if ip vanishes only on a set of measure zero, then h is an element 
of n(w)(jc, a) of constant absolute value and is the unique element of 
n(n)(x, a) at which inf{||g|L|g e U{n)(x9 a)} is attained. 

This simple idea is at the bottom of Glaeser's successful treatment 
[4] of the special case 

r = n, Xi = • • • = xn = a, %n+i = * * * = ^2n == b. 

In this special case, Sn,x reduces to the space of polynomials of degree 
<r , hence every nonzero ip e Sn,x vanishes only at <r points. 

In the general case, tp e SnfX is known to vanish only at < r points unless 
yj vanishes on an interval. But whether or not this happens, with 
Ss:=Ke(Sn,x)^L1[a9 b], where e>0 and 

(Keg)(x) := P e x p ( - ( x - l)2/(2£
2))g(£) « / ( e ^ ) , 

J— oo 

every nonzero \p G Se vanishes only at <r points [5, proof of Theorem 
4.1 in Chapter 10, especially item (4.23)]. Hence, there exists exactly one 
he'm 

Ue := {g e L J a , b] | JV,g = ƒ <pj™9 all <pB G 5ej 

at which inffllglLlg G IIJ is attained, and this he is of constant absolute 
value and has fewer than r sign changes. Since 

lim || (p — IC^Hx = 0 for all (p e Sn>x, 
£ - • 0 + 

it follows that 
lim inf || M oo ^ inf{l|glL I % e U{n\x, a)}, 

hence, for some positive null sequence (em) and some points ^ < - • •<£*_! 
in [a, b] with k^r, (heJ converges uniformly on compact subsets of 
[a, b]\{£l9 - • • , !v_i} to some function h for which 

lim II*. |L = PIL £ inf{||g|L | g e n w ( x , a)}. 
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But this h is necessarily of constant absolute value, has fewer than r 
sign changes and is in Tl{n)(x, a), which finishes the proof. 

The above argument extends at once to the minimization of HL/H*, 
under the same constraints, with L an nth order ordinary linear differential 
operator which is totally disconjugate. 
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