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1. Observable groups and invariant theory [2]. Throughout this paper, 
k denotes a fixed algebraically closed field of characteristic 0 and G a 
connected, reductive algebraic group defined over k. (Our definitions and 
theorems regarding algebraic groups are taken from [1]. From now on, we 
shall always write variety instead of ^-variety and morphism instead of k-
morphism. A variety will always be identified with its ^-rational points.) 
The subgroups of G in which we are interested are described in the next 
two definitions. 

An algebraic subgroup H of G is called observable in G if there is a 
finite-dimensional rational representation p:G-+GL(V) and a vector 
v e F such that H=SG(p, v)={g e G\p(g)v=*v}. 

An observable subgroup H of G is said to satisfy the codimension 2 
condition on GjH if there is a finite-dimensional rational representation 
p:G->GL(V) and a vector v e V such that 

(a) H=SG(p,v); 
(b) each irreducible component of C1(G • v) — G • v has codimension 

^ 2 in C1(G • v). 
(In (b), G - v denotes the orbit of v under the action of G. Furthermore, 

if A is a subset of some affine space km, we shall always denote by 
Cl(A) the Zariski-closure of A in km.) 

Now let Z be an irreducible affine variety and let k[Z] be the ring of 
regular functions on Z. We assume that G operates regularly on Z via a 
mapping from GxZ->Z denoted by (g, z)->g • z. Then G operates on 
k[Z] as follows: (g >f){z)=f{g~1 • z) for all fek[Z\, zeZ, and g G G. 
For H any subgroup of G we put k[Z]H = {f e k[Z]\h • ƒ = ƒ for all h e H}. 

The importance of observable groups in invariant theory is illustrated 
by the two following results. 

(i) Given any subgroup H of G, there is an observable subgroup H" 
of G such that for any irreducible affine variety Z on which G operates 
regularly, we have k[Z]H=k[Z]H". 
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(ii) For H an observable subgroup of G, the following conditions are 
equivalent: 

(a) H satisfies the codimension 2 condition on G/H; 
(b) if Z is any irreducible affine variety on which G operates regularly, 

then k[Z]H is a finitley generated ring over k. 
Again, let G operate regularly on an irreducible affine variety Z. We 

say that (Z, G) satisfies condition (C) if there is a nonempty, G-invariant, 
Zariski-open set U in Z such that for each u e U, the stabilizer of u in G, 
denoted by SG(u)9 satisfies the codimension 2 condition on GjS0(u). 
(Incidentally, this does not necessarily mean that if u G U, then each 
irreducible component of C1(G • «)—G • u has codimension ^ 2 in 
C1(G • w).) The purpose of this paper is to prove the following: 

THEOREM. Ifp : G->GL( V) is a finite-dimensional rational representation 
of G, then (V, G) satisfies condition (C). 

Our proof is derived from a method of J. Kozul in the theory of com­
pact transformation groups which allows an induction procedure to work. 
Recently, this method has been described and used in an algebraic group 
setting by D. Luna and R. Richardson [4], [6]. In particular, our proof of 
the theorem above is the same as Richardson's proof of the existence of 
principal isotropy subalgebras with a small modification and the notable 
use of the following results from [2]. 

1. An algebraic subgroup H of Gis observable in G if and only if H0 is. 
In this case, H satisfies the codimension 2 condition on GjH if and only if 
H0 does [2, §3, Remark (ii), and §§5, 3, Remark C], 

2. Let H be an observable subgroup of G. If there is a finite-dimensional 
rational representation p:G-^GL(V) and a vector v e V such that H= 
SG(p, v) and k[C\(G • v)] is a unique factorization domain, then H satisfies 
the codimension 2 condition on G/H [2, §§5, 3, Remark A], 

3. Let G be a connected, reductive algebraic subgroup of some GLn(k) 
and let H be an algebraic subgroup of G. Then H is observable in G if and 
only if H is observable in GLn(k). Furthermore, in this case, H satisfies 
the codimension 2 condition on G/H if and only if H satisfies the co-
dimension 2 condition on GLn(k)/H [2, §6, Theorem 4]. 

2. A quotient variety [4], [6]. In this section, His a connected reductive 
subgroup of G. Let H operate regularly on the irreducible affine variety X 
via a mapping from HxX-+X denoted by (h, x)-+h • x. Then H operates 
regularly on G x l a s follows: h • (g, x)=(gh~1, h • x). Since the stabilizer 
in H of each point in Gx X is {e}, all the orbits have the same dimension 
and so are closed. It follows that the quotient variety (G X X)/H exists and 
is affine with k[(GxX)/H]=k[GxX]H [5, Chapter 1, §2, Amplification 
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1.3]. We shall let <f>:GxX-+{GxX)lH be the canonical map and shall 
write (/>:(g, x)->[g, x]. The group G operates regularly on (GxX)jH by 
g' ' [g> x]=[g'g, x]. Furthermore, the relationship between the stabilizers 
in H of points in X and the stabilizers in G of points in (G X X)\H is given 
by 

SG([g,x])=gSH(x)g-\ 

An important fact about (G X X)jH not explicitly stated before is the next 

LEMMA. The canonical mapping </>:Gx X-+(G X X)/H is flat. 

PROOF. We need to show that the mapping Y:Hx(Gx X)->(G xX)x 
(G X X) given by Y (A, (g, x)) = (ghr1, h • x) x (g, x) is a closed immersion 
[5, Proposition 0.9, p. 16, and Definition 0.8, p. 9]. Let Z=GxX and 
let k[Z]H=k[f1, • • • ,ƒ.]. Then the image of Y is {(a, b) eZxZ\fi(a)= 

fi(b) for each i= 1, • • • , r} ; this closed set is isomorphic to H x (G X X) and 
the Lemma is proved. 

COROLLARY. IfXis regular, then so is {GxX)jH. 

PROOF. This follows at once from [3, Chapter 4, §6, Corollary 6.5.2]. 

3. Proof of Theorem [6]. We need two preliminary results. 
1. Let p\G-+GL{V) be a finite-dimensional rational representation of 

G and assume that there does not exist an open G-orbit on V. Then there 
is a vector v e V, v^O, such that SG(p9 v) is reductive [6, Lemma 1.1]. 

2. Let G act regularly on the irreducible affine varieties X and Y and 
let oc:X->Fbe a G-equivariant morphism. Assume that there is a simple 
point x e X such that a(x) is a simple point of Y and the differential (d<x)x 

is a linear isomorphism. Then if (X, G) satisfies condition (C), so does 
( 7 , G) [6, Lemma 3.1]. 

PROOF. Under the assumptions above, Richardson shows that there is 
an open G-invariant subset Uin Xcontaining x such that a(U) is an open, 
G-invariant subset of Y, OL\U is an open map, and SG(%I)0=S0(OL(U))0 for 
each u in U. Our conclusion now follows from 1 in §1. 

PROOF OF THEOREM. We proceed by induction on (dim F+dim G), the 
case where dim F+dim G = 0 being trivial. Now if G has an open orbit on 
V, then (K,G) satisfies condition (C) by 2 in §1. Also, if V°= 
{v e V\p(g)v—v} is not {0}, then there is a G-invariant subspace V0 of V 
such that V= V0®VG ; in this case, we have that (F0, G) satisfies condition 
(C) by induction and, hence, so does (V, G). From now on, then, we 
may assume that G has no open orbit on V and that VG = {0}. 

By 1 above, there is a vector v e V, VT^O, such that SG(p, v) is reductive. 
We let H=SG(p,v)0; by our assumptions d i m i / < d i m G . Now, if we 
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denote by Tv the tangent space to G • v at v and identify Tv with an H-
invariant subspace of V, then we may find an 77-invariant subspace W 
of V such that V=W(BTV. Using W, we construct the quotient space 
(G X W)\H as in §2 and let O : G x W-KG X W)\H be the canonical map. 

By induction, (W, H) satisfies condition (C). Hence, there is a non­
empty, //-invariant, Zariski-open set U1 in W such that, for each ux in Ul9 

SH(UI) satisfies the codimension 2 condition on HjSH(u^). Then, U= 
(f>(Gx t/x) is a nonempty, G-invariant, Zariski-open subset of (Gx W)jH 
such that, for each u in U, SG(u) satisfies the codimension 2 condition on 
GjSG(u). Indeed, if u=[g, w], then we have seen that SG(u)=gSH(w)g~1; 
but SH(w) satisfies the codimension 2 condition on HjSH(w), therefore, 
on G/SH(w) by 3 in §1. 

Finally, let r:Gx W-+V be defined by r(g, w)=g • (v+w); it is easy to 
check that (dr){e 0) is onto. There is a mapping ip: (Gx W)/H->Vsuch that 
r=y> o (f). Furthermore, ip is a G-morphism and (since (GxW)jH is 
regular) (^)[e,0] is a linear isomorphism. The Theorem now follows from 
2 above. 
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