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1. Introduction. In this announcement the Smale-Hirsch classification 
of immersions ([8], [5]) is extended to maps of arbitrary constant rank, 
under certain conditions on the source manifold. 

THEOREM 1. If M is open and has a proper Morse function with no 
critical points of index >A;, then the differential map d:Homk(M9 W)-+ 
Link(TM, TW) is a weak homotopy equivalence. 

(A manifold with such a Morse function will be said to have geometric 
dimension ^k. We will write geo dim M^K.) 

Notation. M and W are smooth manifolds with tangent bundles TM, 
TW; Homk(M, W) is the space of smooth maps of rank k from M to W, 
with the C^compact-open topology; Link(TM, TW) is the space of 
continuous maps: TM-+TW which are fiberwise linear maps of rank k, 
with the compact open topology; d(f)=df 

REMARKS. 1. Weakening the hypotheses leads to false statements. If 
M is not open there are counterexamples when k=dim W as. in [7]. 
Otherwise, take M to be the parallelizable manifold Sk+1xR; then the 
identity map of M can be covered by H e Link(TM, TM) but H cannot 
be homotopic to the differential of an ƒ G Homfc(M, M) since such an ƒ 
(by Sard's theorem) would be null-homotopic. I owe this example to 
David Frank. 

2. When k=dimM this gives the Smale-Hirsch theorem for open 
manifolds, but when A:=dim W this does not give the full classification 
of submersions [7]. The missing cases will be considered in a future article. 
(ADDED IN PROOF. A necessary and sufficient condition for He 
Link(TM, TW) to be homotopic to the differential of some ƒ e Homk(M, W) 
is given, for arbitrary open M, in M. L. Gromov, Singular smooth maps, 
Mat. Zametki 14 (1973), 509-516. It is equivalent to requiring that H 
factor through a ^-dimensional bundle over a fc-dimensional complex.) 
Immersions and submersions are the only overlap between this theorem 
and Feit's classification of A>mersions (maps of rank everywhere^/:) 
[2] 

3. This theorem is not a special case of Gromov's theorem [3], since 
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having rank k is not an open condition in general. We will, however, 
make heavy use of the ideas and results of [3] throughout this work. 

4. A map of constant rank is locally a submersion followed by an im­
mersion, i.e., a subimmersion. The ensuing local "stability" is the key to 
our proof. It also follows that inverse images of points under a map of 
constant rank foliate the source manifold. An application of Theorem 1 
is then this weak form of a theorem of [4]. On an open manifold M of 
geometric dimension ^k, any plane field a of codimension k is homotopic 
to an integrable field. The proof is immediate, since projection onto the 
complementary bundle a1 can be considered as a bundle map of rank k 
from TM to the tangent bundle of the total space of orx. 

The proof of Theorem 1 has two main steps: First, the manifold M 
is assumed to be highly coconnected ; then the general case is reduced to 
this special one. 

2. Proof for highly coconnected manifolds. Let a(0)=a(l)=0, a(2)= 
tf(3)=l, and a(x)=%(x— 1) if x^.4. 

THEOREM 1'. Let dim M=n. If geo dim M^min(a(n), k), then d: 
Homfc(M, W)-+Link(TM, TW) is a weak homotopy equivalence. 

The theorem proving machine ([3], [6]) reduces the proof to showing 
that the restriction map Homfc(F, W)->Homk(U, W) has the covering 
homotopy property, when U^V^M are «-dimensional submanifolds, 
and F=C/Uhandle of index 2,^min(a(n)> k). This is not true in general 
(see Figure 1), but, as pointed out to me by Edgar Feldman, the weak 
covering homotopy property [1] is sufficient (this allows a preliminary 
vertical homotopy; see below). Using 3.2.3 of [3] (r-microflexible implies 
/•-flexible) we can further reduce our problem to the following lemma. 

i / / / V T ^ = fo = F h e r e 

FIGURE 1 



1974] SMOOTH MAPS OF CONSTANT RANK 515 

WEAK MICRO-COVERING HOMOTOPY LEMMA. Suppose we are given 
U, V as above, a compact P and continuous maps F:P-+Homk(V, W) 
and f:Px [0, l]-*Homfc(£/, W) with f^=Fj\U for peP. Then there 
exist £>0 and a continuous F:Px [— 1, e]—>Homk(V, W) with FJ)_1 = 
Fvforp e P , such that PVti\U=fVt0 ift^O and=fVtt ifO^t^e.forp e P. 

SKETCH OF PROOF. SO as not to obscure the geometry, I will take 
P = a point and leave it out of the notation. We then consider 
F e Hom^F , W) and a homotopy ƒ:/-+Homfc( U, W) with f0=F\U. 

Let us admit1 that the homotopy ft is defined on a "collar neighborhood" 
N (as in [7]) of U in V. By Remark 4 above, there exists a disc Dn about 
any point of N such that/i |Dw is a subimmersion, for 0 ^ / r ^ l . This suffices 
for the case k=X=\ (everything is trivial when Â;=0): we construct an 
isotopy of N— U in itself which deforms the identity to a map pulling each 
component of N— U through such a Z>w, across the foliation defined there 
by F (see Figure 2). Then after a preliminary homotopy defined by com-

V-N 

'w-/-> ker dF / 

u 

FIGURE 2 

posing F with this isotopy, the stability of submersions and immersions 
can be used to give an initial lifting, as required. The deformation corre­
sponding to the problem of Figure 1 might be as in Figure 3. 

In general N—U^:S
k~1xDn~xxL The subset corresponding to the 

two discs would be a tubular neighborhood of the "core" S ^ S ^ x 
{0}x{|}. If F\S is an immersion, then F subimmer ses a tubular neigh­
borhood T of 5, and we proceed as before, using a preliminary isotopy 
which draws N— U through T, across the foliation defined in T by F. 

It is clearly sufficient to show that S is isotopic to a sphere immersed 
by F; this is proved in three steps. First, using 5.2.1 of [3] and the hypoth­
esis À^k, the inclusion i:S->N—U is homotopic to an immersion i' 

1 This leap of faith is not required if, for U^M, Homk(U, W) is defined as 
inj lim Homfc(y4, W), where A runs through the family of open neighborhoods of U 
in M, and is given the quasi-topology it inherits as inj lim. See [3, §2]. 
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FIGURE 3 

transverse to the foliation defined by F; then F o ï is also an immersion. 
Next, since X^a(n) this immersion can be (^-approximated by an em­
bedding i". If the approximation is good enough, F of will still be an 
immersion. Finally we use X^a(ri) to conclude that i and i" are isotopic. 

3. Theorem 1' implies Theorem 1. Pick / sufficiently large so that 
geo dim M^a(n+l), and let M'=MxRl. This manifold satisfies the 
hypothesis of Theorem 1'. Give M a metric and M' the product metric. 
Letp\M'-+M be the projection and i\M-+M' the inclusion as Mx {0}. 

I will prove that d induces a bijection of connected components, i.e. 
that d* :ir0 Homk(M, J¥)=TTQ Linfc(TM, TW). Higher homotopy groups 
can be treated analogously. 

(a) d* is onto. Given H e Linfc(TM, TW), the composition H'= 
Hodp:TM'->TW is nomotopic to dF, for some F e Homk(M', W), 
by Theorem 1'. The projection 7!M"-^ker H± = (ker H')L\M is therefore 
homotopic to an epimorphism TM-+ker dFL covering /. It follows (see 
[3, 4.4.1], and [6]) that i is homotopic to a smooth map (p\M->M' 
transverse to ker dF, and that H is homotopic to d(F <> <p), the differential 
of a map of rank k. 

(b) d* is one-one. Suppose given ƒ, g e Homk(M, W) and a homotopy 
Gt in L'mk(TM, TW) joining df to dg. Composing with dp gives an arc 
G't joining d(fop) to d(gop); by Theorem Y the arc G't is homotopic 
with fixed endpoints to an arc dFt, with F 0 =/° /? , Fx=gop. It follows 
that the arc of projections TAf-^ker Gi = (ker Gt)1 \M is homotopic to an 
arc of epimorphisms 7!M->ker dF}- \M, which we consider as an arc Ht 

of maps TM-+TM', with Ht transverse to ker Ft. Assertion. This arc 
is homotopic through such arcs to the arc of the differentials of an arc 
<pt:M->M' with cpt transverse to ker Ft. We return to this assertion in a 
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moment. It is easy to check, using [3] or [6] again, that i is homotopic 
to <po through maps transverse to ker dF0, and homotopic to cpx through 
maps transverse to ker dFl9 so that a homotopy in Homk(M, W) between 
ƒ and g may be described by 

ƒ = F0 o i ~ F0 o <p0 ~ F± o çpx ~ Fx o ƒ = g. 

The assertion is an application of [3]. Let 

A(M) = {HE Lin(TM, TM')1 \ Ht is transverse to ker dFt for t e 1} 

and B(M)=:{feîîom(M,M,)I\dofEA(M)}. Here Hom(M, M') is the 
space of smooth maps: M->M' with the C1-compact-open topology, 
Lin(7"M, TM') is the space of continuous, fiberwise linear maps: TM-+ 
TM' with the compact-open topology, and XY is the space of continuous 
maps: Y->X, with the compact-open topology. It follows from [3, 2.4.1, 
Corollary to 3.2.3 and 3.4.1] that the "differential" d:B(M)->A(M) is 
a w.h.e. 
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