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1. Weakly and strongly closed operators. Let I be a topological 
space with topology r (say, a Banach space with weak topology), let 
S be a subset of X, and Y a Banach space. An operator s/:S->Y (not 
necessarily linear) is said to be weakly [strongly] closed with respect to 
(X, r) (briefly, s/ has property Kw [Ka]) provided xk e S, k=l, 2, • • • , 
x e X, y e F, xk-+x in (X, r) , s/xk->y weakly [strongly] in Y implies 
x e S, y=s/x. Analogously, s/:S-+Y is said to have the weak [strong] 
convergence property with respect to (X, r) (briefly, s/ has property 
Yw [VJ) provided xk e S, k=l9 2, • • • , x e S, xk-^x in (X, r) implies 
s/xk->s/x weakly [strongly] in Fas k-+co. 

Convergence properties Yw and Vff have been already used in [1], 
[8] toward existence theorems in multidimensional problems of optimi­
zation. The closure properties Kw and Kff are used here in this context 
for the first time. These closure properties (closed graph properties) are 
well known. (See, e.g., N. Dunford and J. T. Schwartz [11] for linear 
operators ; for nonlinear monotone operators see, e.g., G. J. Minty [14].) 

2. Multidimensional problems of optimization with state equations in 
the strong form. We are interested here in problems of optimization 
(Lagrange problems, or problems of optimal control) in a fixed bounded 
domain G^EX. The unknown is an element of a Banach space X with 
norm \\x\\. State equations—in either strong or weak forms—and unilateral 
constraints are expressed in terms of general not necessarily linear oper­
ators on some subsets S of X, mapping S into vector-valued L-integrable 
functions on G and dG respectively, and of arbitrary measurable vector-
valued control functions u on G and v on dG. 

Precisely, we denote by Y a closed subset of dG, by /LL a suitable measure 
function on T, by T the set of all measurable vector functions u(t)= 
(w1, • • • , um), t G G (distributed controls), and by f the set of all ju-
measurable vector functions v(t)=(v1, • • • , / ) , teY (boundary con­
trols). We denote by JSf, f , Jt, X given operators JS?:S-*(L3,(G))r, 
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/:S-+(L9(T)y'9 Jt:S->{L„(G)y, J f :S-+(Lp(T)f9 where p^l, and 
r, r ' , s, s' are integers. The images under J§?, f 9 Jt', J f of elements 
XGS will be denoted by z9z9y9y9 or z(t)=(z1

9-• • 9z
r)=(J?x)(t)9 

t G G, i ( 0 = ( i \ • • • , ir')=(/x)(t)9 teV; y(t)=(y\ • • • ,y)=(^x)(t), 
t G G, <y(0=(y1, • • • , / ) = G ^ * ) ( 0 , f e T. 

We consider the problem of finding elements x G S, UGT9 v e f, so 
as to minimize a cost functional of the form 

(1) I[X9 U, V] = f ƒ,(*, ( ^ x ) ( 0 , W(0) * + f goÜ, VTxXt), V(t)) dfl, 
JO JT 

subject to state equations (strong form) 

(2) (&x)(t\ = f(t9 (uf*)(0, «(0) a.e. in G, 

(3) ( / * ) ( 0 = g(r, (.T*)(0, t>(0) /*-a.e. o n T , 

and unilateral constraints on the values of u9 v9 y9 y of the forms 

(4) u(t) G U(t9 (JVx){t)) c Em a.e. in G, 

(5) »(0 G V(t9 (JtTx)(t)) S £m ' //-a.e. on I \ 

(6) G^*)(0 G A(t) ç £ s a.e. in G, 

(7) (•#*)(/) e 5 ( 0 <= £•' //-a.e. on I \ 

Here we assume that for any t G cl G a given subset ^4(0 of 2s* is assigned, 
and we denote by A the set of all (t9 y) G EV+S with t G cl G, y G A(t). We 
assume that for any (t9 y) G A a, given subset U(t9 y) of Em is assigned 
(distributed control space), and we denote by M the set of all (t9y9 u) 
with (t9y) GA9 UG U{t9y). Then, fQ(t,y, «), f(t9y9 u)=(fl9 • • • ,ƒ.) are 
given functions on M. Analogously, we assume that for any / G Y a 
given subset 5 ( 0 of Es' is assigned, and we denote by B the set of all 
(t,y) GEv+S' with tGT9 y GB(t). We assume that for any {t9y)GB a 
given subset V(t9y) of Em' is assigned (boundary control space), and we 
denote by M the set of all (t,y,v) with (t9y)GB9 VG V(t9y). Then, 
go(t>y> *0» g('>7> *0=(gi, • • " , ft.') are given functions on M. 

We denote by y=(y1, • • • ,ƒ*) and ƒ = ( j 1 , • • • , y8') the state variables 
of the problem. We denote by \E\ the Lebesgue measure of a measurable 
subset E of G, as well as the //-measure of a //-measurable subset E of T. 

Usually, X is a Sobolev space on G, state equation (2) represents a 
system of r partial differential equations in G, and state equation (3) 
represents either boundary data, or a system of r' partial differential 
equations on Y (or on 9G). But the situation may be quite different, since 
the operators J? , ƒ , Jt'9 Ctf need not be differential operators. All we 
shall require is a set of axioms (H) in the present setting, as well as 
in the setting of §3 with state equations in the weak form. In all cases 
the existence theorems follow in a natural way from uniformly proved 
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closure theorems and lower closure theorems, extending the usual lower 
semicontinuity theorems for classical free problems of the calculus of 
variations. 

(HJ Hypotheses on -§?, f.JK.X'. We assume that J2? :S,->(L1(G))r and 
ƒ : S-^(L1(T))r' are weakly closed (property Kw) and that J(\S-> 
(L^G))8, JT: £—*(L1(r))*' have the strong convergence property (property 
Vff) with respect to (X, r). 

(H2) Hypotheses on the set T and measure JU. We assume that the closed 
set r g dG is the union of finitely many sets I \ , • • • , FN, each I \ being 
the image of a (v—l)-dimensional interval I under a transformation JH, 
of class K (Morrey), say T!,:/—•r,. To simplify the exposition we assume 
that jbt is the hyperarea measure defined on V by the mappings Tj. 

(C) Property C. Instead of the usual closure and continuity require­
ments, we shall assume that only the following Carathéodory property 
(C) holds on G9 A, M9 f0 and/: Given e>0 there is a compact set Cç G 
with \G—C\<e such that the sets Ac=[(t9 x) e A\t e C] and Mc= 
[(t, y, u) G M\t e C] are closed, and fQ(t9 y, u), f(t9 y, u) are continuous 
on Mc. 

For instance, if A and M are closed, and fQ(t9 y, u)9f(t9y9 u) are meas­
urable in t for every (y, w), and continuous in (y9 u) for every /, then it is 
well known that property (C) holds for A, M9fo9f. 

(T) Growth hypotheses on ƒ'o9 f and g0, g. We assume that fQ and ƒ 
satisfy the following growth property (\F): Given e>0 there is a function 
T e (0^0 , teG9Yee LX{G)9 such that \f[t9y9 u)\<We{t)+ef0{t9y9 Ü) for 
all {t9y9 u) eM. Analogous hypotheses (C) and (T) are made on T, 5 , 
M, gQ and g. Note that property (T) on/0, ƒ for e=l implies/.^—^(O 
with Tx e Lj(G), and the analogous property (T) on g0, g implies g0ï£ 
- T x ( 0 with Yx G Lx(r). Thus, under such properties (T) both integrals 
in (1), say Ix and I2 are bounded below, and so is I[x9 u9 v]. 

The sets Q(t9y)9 R(t9y)^ and seminormality conditions. For every 
(t9y)eA we denote by Q(t9y) the set of all (z9z)GEr+1 with iâ: 

fQ(t9y9 u)9 z=f(t9y9 u)9 u e U(t9y). Analogously, for every (t9 y) e B we 
denote by R(t9y) the set of all {z9z)eEr'+x with z^g0(t^ y, v), 
Zj=g(r, y9 v)9 v G F(f, ƒ). We shall need the convexity of these sets Q(t9 y)9 

R(t9 y)9 together with some regularity (seminormality) conditions, namely, 
property (Q) ([l]-[5]), a variant of Kuratowski's upper semicontinuity, 
or property (K) [13]. In^[5] Cesari showed that it is enough to require 
property (Q) of the sets Q(t9 y)9 R(t^y) with respect to the state variables 
only, y and y respectively. Thus, Q(t9 y) is said^to have property (K) 
[(Q)] with respect to y at (f9y)eA9 provided Q(t9 y)=f)ô cl S(f9 y9 ô) 
[Q(f9^y)=f]ô cl co S(f9 y9 ô)]9 where S(f9 y9 8) is the union of all 
sets Q(f9y) with y e A(f)9 \y—y\^ô9 ô>09 and where cl and co denote 
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as usual closure and convex hull. Analogous definitions hold for the sets 
R(t,y). Finally, properties (Qp), intermediate between properties (Q) 
and (K), have been introduced in [8], and P. Kaiser [12] has shown that 
these properties too need only be verified with respect to the state variables. 

Recently, Cesari has shown [6], [7] that these requirements can be re­
placed by a different set of hypotheses. For instance, if the sets Q(t, y) are 
closed and convex, it is enough to know that (al) there is a bounded measur­
able function p:G-+Er

9 with p(t)e Q(t,y)=f(t,y9 U(t,y))<=Er for all 
y^e A(t), t G G; (a2) for every N>a=Sup\p(t)\, the nonempty convex sets 
Q(t,y)n[E1xD(0, N)] satisfy property (K) with respect to y, where 
D(0, N)=[zG£r||z|^7V];(a3)forborne constant c^O and all ze Q(t,y), 
\z\<:2a we have |Inf[z°|(z°, z) e Q(t, y)]\^c. The same holds for the sets 
R(t,y). Other alternate hypotheses have been discussed in [9]. Whenever 
the sets Q(t,y), R(t,y) are not convex, existence theorems analogous to 
I and II below hold for generalized (strong, or weak) solutions. 

A triple (x, u, v), x G S, u e T, v e T, is said to be admissible provided 
relations (2), (3), (4), (5), (6), (7) hold,f0(t, (Jtx){t\ u{t)) is L-integrable 
in G, and gQ(t, (JTx)(t), v(t)) is /^-integrable on I \ 

EXISTENCE THEOREM L Under hypotheses (H^, (H2), (C), (T ) , if for 
almost all feG the sets Q(f, y), y e A(f), are convex and have property (Q) 
with respect to y in A(f), if for /u-almost all feV the sets R(t, j ) , y e B(f)9 

are convex and have property (Q) with respect to y in B(t), if£l is a non­
empty closed class of admissible triples (x,u,v) such that the set {x}n is 
sequentially relatively compact in (X, r) , then the functional (1) attains 
its infimum in 0 . 

The proof is similar to the one in [8, statement (4.i)] with p=r, p' =r\ 
where now use is made of property (Kw) of the operators JSf and cf, and 
of lower closure theorems in [5, statement (7.i), condition (/?) of Remark 
11], and corresponding extension to integrals defined on V as in [8]. For 
further extensions of Existence Theorem I under alternate closure and 
convergence properties see P. Kaiser [12]. 

3. State equations in the weak form. We consider now the case where 
the functional equations (2), (3) (state equations) are written in the weak 
form, as it is customary in partial differential equation theory. To this 
purpose let W denote a suitable normed space of test functions w= 
(wx, w2), where wx G (Lq(G))r and w2 e (LQ(T))r' are vector valued functions 
defined in G and V respectively, p-1+q~1 = l with the usual conventions. 
Let W* be the dual space of W. 

We shall use the same general notations as in §2. Instead of the 
operators JSf and ƒ, we shall consider one operator ^iS-^W*, so that 
J^x for x G S is a bounded linear operator J^x: PF-^reals. For every 
xeS,ueT,vefwe consider also the operator hXtUtV9 or h: JF-^reals, 
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defined by 

K.u,v(wi> w,) = \J(t9 Ç*x)(t), u{t))wx{t) dt + j g(t9 (JTx)(t)9 v(t))w2{t) dp 

where fw± and gw2 denote the usual inner products in Er and Er' respec­
tively. Instead of the state equations (2), (3) as before we consider now the 
unique state equation <^x=hXtUtV9 or explicitly (^rx)w=hXUtV(w) for 
all w e W9 or 

(8) (<5*)(wlf w2) = hXtUtV(wl9 w2) for all w = (wl9 w2) e W. 

We are interested in finding elements x e S9 ueT9 v ef9 which mini­
mize the functional (1) subject to the state equation (8) and the usual 
constraints (4), (5), (6), (7). A triple (x9 u9 v) is now said to be admissible 
provided xeS9 ueT9 v e f9 relations (4), (5), (6), (7), (8) hold, the 
functions fQ(t9 (Jtx)(t)9 u(t))9 f(t9 {J(x)(t)9 u(t))9 t EG9 are of classes 
Lj(G) and (L1(G))r respectively, and the functions gQ(t9 (Xx)(i)9 v(t))9 

g(t9 (JfxXO, v(t))9 t G T, are of classes LX(Y) and (L1(T)Y' respectively. 
We shall say that the operator 1F\S->W* is weakly star closed with 

respect to (X, S?) (briefly, !F has property K*) provided xk G S9 

fc=l, 2, • • • , x G X, w* G W*9 xk->x in (X9 T), and (^JC^(W)->W*(IV) 

as k-*co for every w eW9 implies x e £f and J^(x)=w*. Instead of (Hj) 
we shall now require 

(HÏ) Hypotheses onJ(9 JT, &. We shall assume t h a t ^ i S - ^ L ^ G ) ) * , 
Jf : S-^(Lx(T)y' have the strong convergence property (property Vff), 
and that JF\S^>-W* is weakly star closed (property K*) with respect to 
(X9 r). 

(H3) Hypotheses on W, W*. We shall assume below that (Lv(G))rx 
(L„(r)) r 'ç W*9 and that there is a constant K>0 such that 

Kll f f + \\w2\\q<K\\w\\w 

where \\w\\w denotes the norm of w=(wx, w2) in the normed space W. 
(Y^,) Growth hypotheses on fo9 ƒ and go9 g. For p—\ we assume that 

/o> ƒ' So> S satisfy growth condition (Y) above. For 1 <p< oo we assume 
that there are functions Y ( 0 ^ 0 , t e G, Y G L X ( G ) , and Y ( 0 ^ 0 , t e T9 

Y G Za(r), and constants a>09 b>0 such that 

I f(t9 y9 u)\* <; Y(0 + af0(t9 y9 u) for ail (t, y9 u) e M, 

\g(t9 y9v)\»<: Y(0 + bgo(t, y9 v) for ail (t9 y9 v) G M. 

For p= oo we assume that there are functions Y( f )^0 , t G G, Y G LJ(G) , 

Y ( 0 ^ 0 , f G I \ Y G Lx(r) and a constant c^O such that 

/ o ( > , J , w ) ^ - m | / a j , t / ) | ^ c for all (t, y9 ü) e M9 

go(t9y9 v) ^ - Y(0, \g(t, y,v)\^c for all (t9y9 v) e M. 
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EXISTENCE THEOREM II. Under hypotheses (H*), (H2), (H3), Ç¥v), 
p^l, if for almost every feG the sets Q(f,y)9 y e A(f), are convex and 
have ̂ property (Q) with respect to y in A(f), if for [x-almost all i e f the 
setsR(f,y), y e B(i), are convex and have property (Q) with respect to y 
in B(f), if Q is a nonempty closed class of admissible triples such that 
{x}n is sequentially relatively compact in (X, r ) , then the functional (1) 
attains its infimum in CI. 

The proof is similar to the one in [5, statement (6.i)] where now use 
is made of property (K*) of the operator ^ . For further extensions of 
Existence Theorem II under alternate closure and convergence properties 
see P. Kaiser [12]. 
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