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Let M be an orientable surface with single smooth boundary curve C 
which is C2 imbedded in Euclidean three-space Ez. (M may be thought 
of as a closed orientable surface with a single disc removed.) Let Me 

be the set of points of E3 at a distance e from M. Me is, of course, for 
small e, an imbedded closed surface which is almost everywhere C2. Using 
N. Grossman's [1] adaptation of N. Kuiper's [2] definition, we say that 
M has minimal total absolute curvature if Me is tightly imbedded or has 
the two piece property, TPP [2]. 

We announce the following result: 

THEOREM. Let M be an orientable surface of genus g with a single 
smooth boundary curve which is* C2 imbedded in E*. Then M has minimal 
total absolute curvature if and only if M has g = 0 and is a planar disc 
bounded by a convex curve, 

The proof uses a series of integral equations and geometric arguments. 
The outline is as follows. First, in his paper [1], N. Grossman shows that 
an orientable surface M of genus g with boundary curve C has minimal 
total absolute curvature only if the following integral equality holds : 

(1) ~ f \K\ dA + ~- [ K ds = 1 + 2g, 

where K is the Gauss curvature of M and K is the Frenet curvature of 
the boundary curve C considered as a space curve in E3

9 where dA is the 
area element of M and ds is the arc element of C. Note that the right-
hand side is the sum of the betti-numbers of M and compare with Kuiper 
[2] for closed surfaces. 

Next, the theorem of Gauss-Bonnet yields 

(2) ± f KdA + ± f K9ds = 1 - 2g, 
2TT JM ITTJC 
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where Kg is the geodesic curvature of C considered as a curve on the surface 
M. 

Adding (1) and (2), we obtain that if M has minimal total absolute 
curvature, 

(3) ^- [ KdA + ± {(K + Kg)ds = 29 
2TT JM:{K>O) 2TTJC 

where the first integral is taken over the points of M where K>0. 

LEMMA 1. If M has minimal total absolute curvature, then M has TPP. 

In [3], L. Rodriguez shows that, if M has TPP, 

(4) — f K dA + — f (#c + Kg) ds = 2. 
2TT JM:{K>O} 2TT JC 

Subtracting (4) from (3), we obtain (l/27r) $M:{K>O}K dA=09 and hence 
K^O in the interior of M. 

LEMMA 2. i$T:gO in the interior of M. 

LEMMA 3. C is a plane convex curve. 

Lemma 3 is proved by using Morse theory and studying the convex 
hull of M6. 

LEMMA 4. K==0 in the interior of M. 

This follows immediately from Lemmas 2 and 3. 
Now Lemma 4 implies $M\K\dA—Q9 and Lemma 3 implies 

(1/27T)$CK ds=l. Thus, in order for equation (1) to hold g must be 
zero and M must be a planar disc bounded by a convex curve. 
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