MINIMAL TOTAL ABSOLUTE CURVATURE FOR ORIENTABLE SURFACES WITH BOUNDARY

BY JAMES H. WHITE

Communicated by S. S. Chern, September 22, 1973
Let M be an orientable surface with single smooth boundary curve C which is C^{2} imbedded in Euclidean three-space E^{3}. (M may be thought of as a closed orientable surface with a single disc removed.) Let M_{ε} be the set of points of E^{3} at a distance ε from $M . M_{\varepsilon}$ is, of course, for small ε, an imbedded closed surface which is almost everywhere C^{2}. Using N. Grossman's [1] adaptation of N. Kuiper's [2] definition, we say that M has minimal total absolute curvature if M_{ε} is tightly imbedded or has the two piece property, TPP [2].

We announce the following result:
Theorem. Let M be an orientable surface of genus g with a single smooth boundary curve which is C^{2} imbedded in E^{3}. Then M has minimal total absolute curvature if and only if M has $g=0$ and is a planar disc bounded by a convex curve.

The proof uses a series of integral equations and geometric arguments. The outline is as follows. First, in his paper [1], N. Grossman shows that an orientable surface M of genus g with boundary curve C has minimal total absolute curvature only if the following integral equality holds:

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{M}|K| d A+\frac{1}{2 \pi} \int_{C} \kappa d s=1+2 g \tag{1}
\end{equation*}
$$

where K is the Gauss curvature of M and κ is the Frenet curvature of the boundary curve C considered as a space curve in E^{3}, where $d A$ is the area element of M and $d s$ is the arc element of C. Note that the righthand side is the sum of the betti-numbers of M and compare with Kuiper [2] for closed surfaces.

Next, the theorem of Gauss-Bonnet yields

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{M} K d A+\frac{1}{2 \pi} \int_{C} \kappa_{g} d s=1-2 g \tag{2}
\end{equation*}
$$

where κ_{g} is the geodesic curvature of C considered as a curve on the surface M.

Adding (1) and (2), we obtain that if M has minimal total absolute curvature,

$$
\begin{equation*}
\frac{2}{2 \pi} \int_{M:\{K>0\}} K d A+\frac{1}{2 \pi} \int_{C}\left(\kappa+\kappa_{g}\right) d s=2 \tag{3}
\end{equation*}
$$

where the first integral is taken over the points of M where $K>0$.
Lemma 1. If M has minimal total absolute curvature, then M has TPP.
In [3], L. Rodriguez shows that, if M has TPP,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{M:\{K>0\}} K d A+\frac{1}{2 \pi} \int_{C}\left(\kappa+\kappa_{g}\right) d s=2 \tag{4}
\end{equation*}
$$

Subtracting (4) from (3), we obtain $(1 / 2 \pi) \int_{M:\{K>0\}} K d A=0$, and hence $K \leqq 0$ in the interior of M.

Lemma 2. $K \leqq 0$ in the interior of M.
Lemma 3. \quad is a plane convex curve.
Lemma 3 is proved by using Morse theory and studying the convex hull of M_{ε}.

Lemma 4. $K \equiv 0$ in the interior of M.
This follows immediately from Lemmas 2 and 3.
Now Lemma 4 implies $\int_{M}|K| d A=0$, and Lemma 3 implies $(1 / 2 \pi) \int_{C^{\kappa}} d s=1$. Thus, in order for equation (1) to hold g must be zero and M must be a planar disc bounded by a convex curve.

References

1. N. Grossman, Relative Chern-Lashof theorems, J. Differential Geometry 7 (1972), 611-618.
2. N. H. Kuiper, Minimal total absolute curvature for immersions, Invent. Math. 10 (1970), 209-238. MR 42 \#2499.
3. L. Rodriguez, The two-piece-property and relative tightness for surfaces with boundary (xeroxed thesis), Brown University, Providence, R.I.

Department of Mathematics, University of California, los Angeles, CaliFORNIA 90024

