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1. Introduction. In this announcement we abstract and preview a 
theory recently developed by the author for applying Newton's method to 
constrained problems in infinite-dimensional normed linear spaces. The 
proofs of these results and a detailed account of the theory will appear 
elsewhere (see [10] and [11]). 

Consider an operator Q:X1->X2 where X1 and X2 are normed linear 
spaces and functional dl9 • • • , ôm defined on Xv We are concerned with 
the constrained problem 

(1.1) Q(x) = 0; subject to ôj(x) = 0, / = 1, • • • , m. 

More generally we consider the problem 

(1.2) Q(x) G M; subject to d^x) = 0, i = 1, • • • , m, 

where M is a finite-dimensional subspace of X2. 
DEFINITION 1.1. By a normalization for problem (1.2) we mean any 

operator P defined from Xx into a normed linear space such that P(x)= 
0<=>x is a solution of problem (1.2). 

The desirability of a normalization for problem (1.2) is obvious; namely 
it allows us to replace a somewhat unorthodox constrained problem with a 
standard-type unconstrained problem. The purpose of this paper is to 
present a theory for constructing a normalization for problem (1.2) which 
readily lends itself to Newton's method. In §3 we show that the following 
well-known methods for ordinary differential equations are actually 
special cases of our theory—the integral equation formulation of the 
initial value problem and the boundary value problem and the method of 
quasilinearization and superposition. An interesting feature of our general 
approach is that we do not consider Newton's method applied to a single 
equation, but construct a different equation at each iteration (i.e., a 
different normalization). 

An obvious way to obtain a normalization for problem (1.1) is to 
consider the operator P from Z3 into X2xRm defined by P(x)= 
(Q(x), ôx(x), • • • , ôm(x)). Indeed, this is the usual approach when X1 and 
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X2 are finite-dimensional. However when Xx and X2 are infinite-dimensional 
this approach is no more than a formal restatement of (1.1) and seldom, 
if ever, does this approach lead to the construction or implementation of 
usable algorithms. 

Examples of problems which are naturally of the form (1.2) and not of 
the form (1.1) are the Euler-Lagrange equation and the Euler-Poisson 
equation from the calculus of variations. In these cases M is a space of 
polynomials. In §6 our general theory is applied to the Euler-Poisson 
equations. 

2. Normalization of problem (1.2). Many of the operators we use in the 
construction of a particular normalization will depend on a point x e X, 
However the majority of the analysis will be performed with this variable 
held fixed; hence its role is primarily that of an index. For this reason we 
write Px (or Sx or Tx or Tx) to denote this dependence on x. We use the 
notation (a^) to denote a matrix and (a*) to denote a column vector. 

Suppose that dl9 • • • , ôm and Q in problem (1.2) are Fréchet differenti-
able a t ^ G l j and Q'(x)=Tx+Sx, where 

(2.1) (i) SX(XX) c M, ( i O I ^ r ; 1 exists. 

Suppose further that 

(iii) dim(M) = m (number of constraints). 

When problem (1.2) satisfies (2.1) we will refer to it as problem (2.1). 
Let {01? • • • , <DW} be a basis for M and let ax, • • • , am be functional 

(not necessarily linear) on Xv Consider 

(2.2) P(y) = QOO - odGOGi am(jOOm, y e Xv 

PROPOSITION 2.1. Given x e Xl9 if the matrix (<%(*)IV^) is nonsingular 
andPx is obtained from (2.2) by requiring that the functionals ai? i '=l , • • • , 
m in (2.2) satisfy 

(2.3) (a,O0) = ( « W - t y i W r . G O O - *&)) for y e Xx, 

then Px is a normalization of problem (2.1), Px is Fréchet differentiatie at 
x, P^xy1 exists and Tx=Px(x)~1. 

PROPOSITION 2.2. Suppose W\ Xx-+X2 is such that W{X^M. Then y is 
a solution of problem (1.2) if and only if it is a solution of problem (1.2) with 
Q replaced by Q+W. 

PROPOSITION 2.3. The normalization for problem (2.1) obtained by 
using Proposition 2.1 is representation invariant, i.e., it depends only on the 
operator Yx given in (2.1) and not on the particular operator Q representing 
problem (2.1) or the particular basis representing M. 
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3. Newton's method and local quadratic convergence for problem (2.1). 
DEFINITION 3.1. By Newton's method for problem (2.1) we mean the 

construction of the sequence 

(3.1) xn+1 = xw - rwPw(xn), n = 0, 1, 2, • • • , 

where x0 G Xl9 Tn=Pn(xn)~
1 and Pn is the normalization for problem (2.1) 

obtained from Proposition 2.1 by using xn for x. 

PROPOSITION 3.2. If the functional ôi9 1^/^m, in problem (1.2) is 
affine and Px is the normalization of problem (2.1) obtained using Prop­
osition 2.1 then the Newton iterates (3.1) satisfy the constraint (3^(x)=0 
beginning with any x0e Xv 

PROPOSITION 3.3. Let x be a solution of problem (2.1). Suppose that the 
matrix (d'i(x)rx<bj) is nonsingular and the operators ôl9 • • • , <5m, T are of 
class C1. Then there exists a neighborhood ofx in Xx and a constant K such 
that the Newton sequence (3.1) may be constructed using Proposition 2.1 and 
converges to xfor any x0 in this neighborhood. Furthermore 

| | x - x w + 1 | | ^K\\x-xn\\\ n = 0 , 1 , 2 , - • • . 

4. Normalization of problem (1.1). Suppose we are given problem (1.2) 
with dim(M)=«<ra (number of constraints). Consider a linear operator 
D:X1-^X2 such that dim(N(D))=m—n. Let DB be a linear right inverse 
for the operator D. The following proposition shows us how to construct 
an equivalent problem satisfying condition (iii) of (2.1). 

PROPOSITION 4.1. The following two statements are equivalent: 
(i) Q(x)eM; 

(ii) Q(X)EM, where Û=DRQ and Û=N(D) + DR{M). 
Moreover, in (ii) the dimension of M is equal to m. 

The following proposition suggests a method for normalizing problem 
(1.1). 

PROPOSITION 4.2. Suppose DR(x) is any linear right inverse for Q'(x) and 
the dimension of the null space ofQ'(x) is equal to m. Then problem (1.1) can 
be put in the form of problem (2.1) by replacing Q(y) by DR(x)Q(y)9 

choosing Tœ to be the identity map on Xx and letting M~N(Q'(x)). 

5. Applications to ordinary differential equations. Consider the second 
order ordinary differential equation with generalized boundary conditions 

(5.1) Q(x)(0 = x\t) - ƒ(f, x, x') = 0; Ô^x) = a, ô2(x) = p. 
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In (5.1), ƒ e Cl(R3)9 Q:C2(a, b)->C{a, b) and dx and ô2 are functionals on 
C2(a9b). 

If (5.1) is an initial value problem, i.e., ô^xj^xià) and ô2(x)=x'(a), 
then the following normalization for problem (5.1) is both classical and 
well known. 

ts 

(5.2) P(x)(0 = x(0 - a - P(t - a) - ([f(r9 x, x') dr ds. 

aa 

PROPOSITION 5.1. The normalization (5.2) for the initial value problem 
(5.1) is the special case of Proposition 2.1 and Proposition 4.1 where 
D:C2(a,b)-*C(a,b) and DR:C(a, b)-+C2(a,b) are given by Z>(x)=x" 
and DB(x)(t)=ƒ*ƒ; x(r) dr ds. 

If (5.1) is the standard two-point boundary value problem i.e., ôt(x)= 
x(a) and ô2(x)=x(b)9 then the following normalization has been given by 
Antosiewicz and analyzed in terms of Newton's method (see [1]) : 

(5.3) P(x)(t) = x(0 - a - Ö - ^ i (j8 - a) - f &g(', *)ƒ(* J, / ) * , 
(fc — a) Ja 

where 

(5.4) g(t, s) = (t - s)H(f - s) + (f - a)(5 - b)l(b -a) îora<:t9s<:b 

and H(t—s) denotes the Heaviside unit function. 

PROPOSITION 5.2. The normalization (5.3) for the boundary value problem 
(5.1) is the special case of Proposition 2.1 and Proposition 4.1 where 
D: C2(a9 b)-+C(a, b) and DR: C(a, b)-^C2(a, b) are given by D(x)=x" and 
DR(x)(t)=$*ag(t, s)x{x) ds with g(t, s) given by (5.4). 

A well-known method for solving problem (5.1) is the so-called method 
of quasi-linearization and superposition, i.e., we obtain the solution of the 
linearized version of (5.1), as a linear combination of the solutions of vari­
ous canonical initial value problems. 

PROPOSITION 5.3. The method of quasi-linearization and superposition for 
problem (5.1) is a special case of our generalized Newton's method where the 
normalizations are obtained via Proposition 2.1 and Proposition 4.2. 

6. Applications to the Euler-Poisson equation. Consider the functional 
/defined on CUl(a, b)x---xCnm(a, b) by 

(6.1) J(y19 • • • 9yJ = Çf(t,y19y?\ •••,/mi\--',y„yiÀ\---9y>))dt9 
Ja 
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subject to the boundary conditions (linear constraints) 

(0 yla) = aa, yl1}(a) = a<2, • • •, ^(w'"1)(fli) = a<fW, 

(6.2) 

(ii) j,(b) = fti, )>|l)(&) = A,, • • •, ylni~l)(b) = &w, f = 1, • • •, m. 

A classical and well-known argument using the second fundamental 
lemma of the calculus of variations shows that any ƒi x • • • xym which 
gives an extrema of the functional (6.1) over the set defined by (6.2) must 
satisfy 

(ƒ**!-!> - f W « + • ' • + (-l)ni f' * * P/J 
\ i Ja 1 Ja Ja / 

( 6 J ) x • • • x (ƒ„,„„, - [ƒ,,„„-!, + • • • + (-1)- P- • • f/„m) 
\ w Ja w Ja Ja / 

e nw i_! x • • x nWw_! 
where 7rt denotes the polynomial of degree /. 

If we introduce the change of variable z^y^, then we have 

y\n'-n = *t»t + f zi, 
Ja 

(6.4) ; 

(t - a)'"'-1 ' f' f« 
y< = a a + af2(( - a) + • • • + a<By — 777- + • • • z<-

Ja Ja ' ( n , - l ) ! 
Also, in terms of zi the boundary conditions (6.2) (ii) become 

%i = : riw4-
 a in^ 

«/a 

(6.5) 

j Ja 

<*.ini{b-aT*-»i{ni-i)\. 

If we now make the change of variables (6.4) in (6.3) then we have an 
example of problem (2.1) where X1=X2=C(ai b)x- • -xC(a, b), ôt are 
given by (6.5), M=11^,! x • • • X n ^ ^ and the operator Q(z) is given by 
(6.3). Observe that the number of linear constraints and the dimension of 
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M are both equal to nx+• • •+nm . We can now apply our general theory of 
Newton's method. The solution to the original problem (and its derivatives) 
is then obtained from (6.4). 

7. An extension of the theory to optimization problems. Let/ , ôi9 • • • , 
ôm be functionals defined on a normed linear space X which are Fréchet 
differentiable. Consider the constrained optimization problem: 

(7.1) minimize ƒ (x) ; subject to ô^x) = 0, i = 1, • • • , m. 

It is a well-known result in the theory of Lagrange multipliers that under 
mild regularity conditions any solution of problem (7.1) must also be a 
solution of 

(7.2) f'(x) G M(x); subject to <5,(x) = 0, i = 1, • • • , m. 

where M(x) denotes the linear span of ó |(*),••• , ô'm(x). The theory of 
Newton's method developed in the previous sections will handle problem 
(7.2) if and only if the functionals dl9 • • • , ôm in (7.2) are linear. In [11] we 
develop the analogous theory of Newton's method for problem (7.2). 
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