SIMPLICITY OF CERTAIN GROUPS OF DIFFEOMORPHISMS

BY JOHN N. MATHER¹

Communicated by Shlomo Sternberg, October 1, 1973

D. Epstein has shown [1] that for quite general groups of homeomorphisms, the commutator subgroup is simple. In particular, let Mbe a manifold. (In this note, we assume all manifolds are finite dimensional, Hausdorff, class C^{∞} , and have a countable basis for their topology.) By a C^{r+} mapping (resp. diffeomorphism) we mean a C^r mapping (resp. diffeomorphism) whose rth derivative is Lipschitz. Let Diff(M, r) (resp. Diff(M, r+)) denote the group of C^r (resp. C^{r+}) diffeomorphisms h of M such that there is an isotropy H_t of h to the identity, and a compact set K such that $H_t(x)=x$ if $x \in M-K$. Epstein showed in [1] that the commutator subgroup of Diff(M, r) (resp. Diff(M, r+)) is simple. Thurston announced in [4] that Diff (M, ∞) is simple. Let $n=\dim M$. In this note we announce the following two results.

THEOREM 1. If
$$\infty \ge r \ge n+1$$
, then Diff $(M, r+)$ is simple.

THEOREM 2. If $\infty \ge r \ge n+1$, then $F\Gamma_n^{r+}$ is (n+1)-connected.

Here $F\Gamma_n^{r+}$ denotes Haefliger's classifying space for codimension *n* foliations of class C^{r+} . These two theorems are closely related by results of Thurston (cf. [2], [4]). The case $r = \infty$ of these theorems is due to Thurston [4].

Here we outline a proof of Theorem 1. By Epstein's theorem, it is enough to show Diff(M, r+) is equal to its own commutator subgroup. A well-known argument shows that it is enough to prove the latter in the case $M = \mathbb{R}^n$. Let A > 1. Let $D_0 = \{x \in \mathbb{R}^n : -2 \leq x_j \leq 2, 1 \leq j \leq n\}$. For $1 \leq i \leq n$, let

 $D_i = \{x \in \mathbb{R}^n : -2 \leq x_j \leq 2, 1 \leq j < i, -2A \leq x_j \leq 2A, i \leq j \leq n\}.$

Let $\alpha \in \text{Diff}(\mathbb{R}^n, \infty)$ be such that $\alpha(x) = Ax$ if $x \in D_0$. Let ρ be a C^{∞} real valued function on \mathbb{R}^n , with compact support, such that $0 \le \rho \le 1$, and $\rho = 1$ on D_1 . Let $\tau_i = \exp(\rho \partial / \partial x_i)$. Then $\tau_i \in \text{Diff}(\mathbb{R}^n, \infty)$, $1 \le i \le n$.

Copyright (i) American Mathematical Society 1974

AMS (MOS) subject classifications (1970). Primary 58D05; Secondary 57D30.

¹ This research was partially supported by NSF Grant GP-31359X-1 and a Sloan Foundation Fellowship.

LEMMA. There exists A_0 such that the following holds. Let $A \ge A_0$. Let f be a C^{r+} diffeomorphism of \mathbb{R}^n , with support in D_0 , and sufficiently close to the identity (with respect to the C^{r+} topology). Suppose $\infty > r \ge n+1$. Then there exist $g_0, g_1, \dots, g_n, \lambda_1, \dots, \lambda_n \in \text{Diff}(\mathbb{R}^n, r+)$ such that

(1)
$$\alpha f g_n \alpha^{-1} = g_0,$$

(2_i)
$$\lambda_i g_{i-1} \tau_i \lambda_i^{-1} = g_i \tau_i, \quad 1 \leq i \leq n.$$

PROOF THAT THE LEMMA IMPLIES THEOREM 1. It is enough to show that any diffeomorphism such as f is a product of commutators, since any element of Diff(\mathbb{R}^n , r+) is a product of conjugates of such diffeomorphisms. Now if $u \in \text{Diff}(\mathbb{R}^n, r+)$, let [u] denote its image in the commutator quotient group. From (1), we get $[f][g_n] = [g_0]$, and from (2_i), we get $[g_{i-1}] = [g_i], 1 \le i \le n$. Hence [f] = 1. Q.E.D.

OUTLINE OF THE PROOF OF THE LEMMA IN THE CASE $r < \infty$. Let B_{δ} denote the subset of Diff($\mathbb{R}^n, r+$) consisting of g with support in D_0 such that

$$\sup_{x \neq y} \|D^r g(x) - D^r g(y)\| / \|x - y\| < \delta.$$

For $\delta > 0$ sufficiently small, and f sufficiently near the identity, there exists a mapping $\Phi: B_{\delta} \to B_{\delta}$ such that if $g \in B_{\delta}$ and $g_n = \Phi(g)$, then there exist $g_1, \dots, g_n, \lambda_1, \dots, \lambda_n \in \text{Diff}(\mathbb{R}^n, r+)$ such that

$$\alpha fg\alpha^{-1}=g_0,$$

(4_i)
$$\lambda_i g_{i-1} \tau_i \lambda_i^{-1} = g_i \tau_i, \quad 1 \leq i \leq n.$$

The mapping Φ is continuous with respect to the C^r topology. Since B_{δ} is compact with respect to the C^r topology, and convex, it follows from the Schauder-Tychonoff fixed point theorem that Φ has a fixed point. But such a fixed point provides a solution of the equations (1), (2₁).

We can only sketch the idea of the construction of Φ . If $u: \mathbb{R}^n \to \mathbb{R}^n$ vanishes outside a compact set, we define

$$||u||_{r+} = \sup_{x+y} ||D^{r}u(x) - D^{r}u(y)|| / ||x - y||.$$

Then it is easy to see that if g_0 is defined by (3), we have

$$||g_0 - \mathrm{id}||_{r+} < A^{-r} ||fg - \mathrm{id}||_{r+}$$

Then we construct g_1, \dots, g_n inductively. Supposing g_{i-1} has been defined, has support in D_i , and is near the identity, we construct g_i to have support in D_{i+1} , to be near the identity and to satisfy

$$||g_i - \mathrm{id}||_{r+} \leq CA ||g_{i-1} - \mathrm{id}||_{r+}.$$

Here, C is a constant independent of A. By taking A sufficiently large, and f sufficiently near the identity in relation to δ , we have that Φ maps B_{δ} into itself, where we define $\Phi(g) = g_n$.

REFERENCES

1. D. B. A. Epstein, *The simplicity of certain groups of homeomorphisms*, Compositio Math. 22 (1970), 165–173. MR 42 #2491.

2. J. Mather, Loops and foliations, Proc. Internat. Conf. on Manifolds, Tokyo, 1973, (to appear).

3. _____, Commutators diffeomorphisms, Comment. Math. (to appear).

4. W. Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc. (to appear).

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138