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The results announced here concern the existence of a solution to the 
general initial value problem 

(1) x'(t)=f(t9x(t))9 x(0) = x0, 

in which x(t) lies in a Banach space X for t e /= [0 , a]. Recent results 
for this problem have been announced in this Bulletin by S. N. Chow and 
J. D. Schuur [1] and by W. E. Fitzgibbon [2]. Related results were ob­
tained earlier by F. Browder [3]. Here however, X is not assumed to be 
separable or reflexive, although as usual/will be continuous in x with 
respect to the weak topology on X, 

A pseudo-solution of (1) is an absolutely continuous function x:J->X 
with pseudo-derivative (see Pettis [4]) satisfying (1). A strong solution 
of (1) is a strongly absolutely continuous function x:J-^X with strong 
derivative (lim^0(*('+^)~*(0)/^ *n norm) satisfying (1) a.e. on J. 
For notions of absolute continuity, see Hille and Phillips [5, p. 76]. 

In what follows let B denote an open ball about some point x0 e X, 
let I = [0, b] be a compact interval, and let ƒ be a functionfrom lx B into X. 

THEOREM A. Assume these hypotheses: 
(a) For a.e. tel, f(t, x) is continuous in the variable x with respect to 

the weak topology on B and X. 
(b) For each strongly absolutely continuous function y:I-+B, f(t,y(t)) 

is Pettis integrable on I. 
(c) For some null set N<=I9 the weak closure off((I—N)xB) is weakly 

compact in X. 
Then (1) has a (possibly nonunique) pseudo-solution on a subinterval 

J=[0,a]ofl. 
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The proof of Theorem A applies the Schauder-Tychonoff fixed point 
theorem to the transformation T defined by 

Ty{t) = x0 + I ƒ(s, y(s)) ds (Pettis integral) 

on the intersection of certain convex subsets of the locally convex product 
space XJ of all functions from / into X. 

Sufficient conditions for (b) to hold are that X be weakly sequentially 
complete, thatfit, y(t)) be weakly measurable for each strongly absolutely 
continuous function y : I-+B, and that (c) hold. If we require that/(f, y(t)) 
be strongly measurable, we obtain the existence of a strong solution. 

COROLLARY B. In Theorem A, replace condition (b) by the following 
condition. 

(u*\ F°r every strongly absolutely continuous function 
* y:I->B, f{t, y(t)) is strongly measurable on I. 

(This condition, together with (c), implies (b).) 
Then every pseudo-solution of (1) is in fact a strong solution. 

A simple sufficient condition for (b*) to hold is that for each point 
x e B,f(t, x) be strongly measurable with respect to t on L 

Strong solutions of (1) will also be obtained in Theorem A if X is 
uniformly convex, for pseudo-solutions of (1) under hypothesis (c) are 
in fact strongly absolutely continuous, hence strongly differentiable by 
Clarkson [6]. 
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