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In this note we announce a result concerning the existence of a periodic 
solution for a class of periodically perturbed conservative systems. Our 
result, in a sense, completes a series of investigations originated by W. S. 
Loud [4]. Also see [1], [2], [3], and [5]. Our techniques are different from 
those of the authors cited above. 

Consider the vector differential equation 

(1) x" + grad G(x) = p(t) = p(t + 2TT), 

where p e C(R, Rn)9 G G C2(Rn, R). this equation can be interpreted as 
the newtonian equation of a mechanical system subject to conservative 
internal forces and periodical external forces. 

THEOREM 1 (LAZER [1]). Let A and B be real constant symmetric 
matrices such that if X^X^* * '=î^n and ^1=^2=' * #=/̂ w denote the 
eigenvalues of A and B respectively then there exist integers Nk^.0, k= 
1, • • • , n, such that 

N* < 4 ^ * < (N* + I)2-

If, for all aeRn, A^d2G(à)ldxt dx^B, then (1) has at most one 2<rr-
periodic solution. 

Our theorem establishes the existence part of the preceding theorem. 
More specifically, we prove 

THEOREM (1)*. If G, A and B satisfy the hypothesis of Theorem 1, 
then (1) has a lir-periodic solution. 

The key to the proof of our theorem is 

LEMMA 1. Let Q(t) be a realnXn symmetric matrix whose elements are 
bounded, measurable and Irr-periodic on the real line. Let A and B be real 
constant symmetric matrices such that A^Q(t)^B. If X^ • *^An and 
^1 = * • ' ^^n denote the eigenvalues of A and B respectively then there 
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exist integers Nk^0, k=l, • • • 9n9 satisfying 

Nl<Xk£K< (Nk + If. 

Let f(t) be a real vector-valued In-periodic continuous function with 
11/(011=^ K some number. Then there exists a number r > 0 , independent 
off(t), such that for any periodic solution u of u" + Qu=f the inequality 
llw(0ll2+llw '(0ll2=''2 holds for all t (we mean u' absolutely continuous 
and the preceding equation holds a.e.). 

Using this lemma we prove that our theorem follows from a generaliza­
tion of Poincaré's perturbation theorem (see [3]). The proof of Lemma 1 
is too long to give here. A brief sketch may be given along the following 
line. Assuming that the conclusion of Lemma 1 is false, we construct a 
sequence of equations of the form 

where zm, Qm and gm are 27r-periodic (Qm symmetric). It is shown that 
the sequences {zm} and {zm} are uniformly bounded and equicontinuous, 
and {Qm} weakly converges to some matrix Q(t). Using the fact that 
the set of symmetric nxn matrices S satisfying A^S^B can be con­
sidered as a compact convex subset of Rp, p=n(n+l)l2, it follows from 
Lemma 1A of (p. 157 of [5]) that Q(t) is a 27r-periodic symmetric matrix 
and A^Q(t)<B. It is then shown that this leads to a contradiction of 
Theorem 1 of [1]. 
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