
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 80, Number 1, January 1974 

DYNAMICAL SYSTEMS, FILTRATIONS AND ENTROPY 
BY M. SHUB1 

Introduction. I would like to try to pose some new directions in 
dynamical systems, at least in that part of the subject which deals with 
the qualitative behavior of the orbit structure of diffeomorphisms and 
flows of compact differentiable manifolds M without boundary. The birth 
of our first child, Alexander, to Beth and myself just two weeks before 
this talk has perhaps made me overly optimistic. But, I think that the 
subject can use some general approaches even if they be Pollyannic. 

The basic problems that I will consider are : 
(I) Genericity : That is, to find a generic set of diffeomorphisms or 

flows such that the asymptotic behavior of the orbits can somehow be 
reasonably understood. 

A generic set means a subset which is a Baire set, that is, the countable 
intersection of open and dense sets. 

(II) Model making: The idea here is to produce in some sense the best 
or simplest diffeomorphisms in each isotopy class of diffeomorphisms of 
M, that is, in each connected component of Diffr(M), the group of Cr 

diffeomorphisms of M, l^r^co. The properties that we shall say make a 
diffeomorphism ƒ simplest are: 

(a) ƒ is structurally stable; 
(b) ƒ has the smallest topological entropy of any structurally stable 

diffeomorphism in its isotopy class. 
Recall that ƒ G Diffr(M) is structurally stable if there is a neighborhood 

of/, C//cDiffr(Af), such that for any g e Uf there is a homeomorphism 
h\M->M with hf=gh. Structural stability says that up to continuous 
changes of variables the orbit structure of the diffeomorphisms in a 
neighborhood of/ is locally constant. 

Now to define entropy via a theorem of Bowen [4]. Let (X, d) be a 
compact metric space and T.X-+X continuous. A set E<=:X is (n9 e) 
separated if for any x, y e E with xj&y there is ay', 0^y<«, such that 
d(P(x), P(y))>e. Let Sn(e) denote the largest cardinality of any (n, e) 
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separated set in X, and let 

Se(T) = lim sup rr1 log Sn(e). 

The topological entropy of T, h{T) is then given by the formula: 

h{T) = lim SE(T). 
e->0 

For/eDifF(Af) , 0^A( / )<oo [4]. So the topological entropy essentially 
gives the asymptotic exponential growth rate of the number of orbits of 
ƒ up to any accuracy and arbitrarily high period. In some sense then, the 
simplest diffeomorphisms are the ones which are structurally stable and 
which have the fewest orbits. 

The work I shall be describing below was almost entirely done in 
collaboration with Z. Nitecki, S. Smale, and D. Sullivan and is contained 
in [11], [18], and [19]. Besides these mathematicians I have also benefited 
greatly from conversations with R. Bowen, M. W. Hirsch and R. F. 
Williams. 

I. The genericity problem for diffeomorphisms. The idea here was to 
isolate some of the useful properties of Smale's Axiom A and no-cycle 
diffeomorphisms (see [22]) which are not generic [1]. The first approach 
to the problem was fine filtrations. 

Recall that for ƒ e Diïïr(M) the nonwandering set of/, £}(ƒ) or just 
simply Q,, is the set {x e M\ given any neighborhood U of x there exists an 
« > 0 such that fn(U)C\Uj£0). £1 contains all periodic orbits and all a 
and co limit points. Given x e M, <x(x) = {y e M | 3 ^ - > ~ 00 and fn'(x)-+y} 
is the a limit set of x and the co limit set of x9 co(x) = {y e M|3^->oo and 
fni(x)->y). So ti is a closed invariant set which contains all the asymptotic 
behavior of/. If O is finite, it consists of periodic points alone. 

A filtration for ƒ e Diff r(M), ^# , is a sequence of compact submanifolds 
with boundary 0 ^MQ^M^- • ><^Mk=M with dim Mj=dim M—m 
and ƒ(M^cInter ior Af,. Given uT, ^ ( ^ ) = n ^ / n ( M « ^ ^ « - i ) is the 
maximal ƒ invariant set in Ma—M^ and ^ M 0 = U a = i KJ^Ji). So 
Ma—Ma_x traps Ka and in principle one should be able to find out a fair 
amount of information about the complicated set K^ in terms of Ma, 
Ma_l5 and/ . For instance H*(K0(<J<))=limit(#*(M0) - > r H*(M0)). 

PROBLEM 1. Given a finite amount of data about Ma9 Ma_l9 and f, 
compute H*(Ka(<Jf)). 

In general, filtrations do not say very much. For example, 0 <=Af is a 
filtration for any diffeomorphism. For any filtration, ^ , K(^)^Q. 
A filtration is called fine if K(^) = Q. Smale's Axiom A and no-cycle 
diffeomorphisms have fine filtrations as do many others. An example of 
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Newhouse [9] showed that the diffeomorphisms which have fine filtrations 
are not generic. So if Q, cannot be trapped with a single filtration generic-
ally how about with a sequence of filtrations ? 

A filtration ^ = 0 c ^ c . -cN^M refines Jt if each Np-Np^ 
M^—M^ for some a. A sequence of filtrations J(l is called fine, 
0<;/<oo, if J(^ refines J(i and f|îlo AT(uT0=Û. 

CONJECTURE 1. 77ze diffeomorphisms which have fine sequences of 
filtrations are generic in Diffr(M). 

A phenomenological characterization of those diffeomorphisms which 
have a fine sequence of filtrations may be given in terms of Q explosions. 
f e Diiïr(M) admits no Cj Q explosions, O^y'^r, if given a neighborhood 
UQif) of Q( / ) in M there is a neighborhood Uf in Diftr(M) with the Cj 

topology such that for g e Uf9 0,(g)<^ Ua(f). 

THEOREM 1.1. f e Diïïr(M) has a fine sequence of filtrations if and only 
if f admits no C° £i explosions. 

The proof of this theorem is in [18] except for the case ra=2 which is 
taken care of in [11]. If C1 Q explosions replaced C° ti explosions in the 
theorem, the conjecture would be true in Diff 1{M) by Pugh's theorem [13]. 

II. The genericity problem for vector fields. The most natural way to 
state the genericity conjecture for vector fields is in terms of Lyapunov 
functions. Recall that L:M->R is a Lyapunov function for XeSCr{M), 
the space of Cr vector fields on M, if and only if DL=0 on QX and 
X(L)<0 otherwise, where X(L)=DL(X{m)). 

CONJECTURE 2. A generic set of vector fields in 9?r{M) have Cm 

Lyapunov functions. 

A vector field X e 3Cr{M) generates a one parameter group of diffeo­
morphisms <f>t:M->M defined by 

d<l>t(x)ldt\t=0 = X(x). 

A filtration J( for a vector field X is a sequence of compact submani-
folds with boundary 0 ^M^M^- • -^Mk=M such that J( is a 
filtration for each (j>i9 t>0 and, moreover, <f>t(x) is transverse to the 
boundary of Mt for all x e M and all ƒ= 1, • • • , k—l. 

The nonwandering set Q>x = {x e M\ given a neighborhood UX^M of x 
and a 7 > 0 there exists a t>Twith </>t(Ux)f) Ux^ 0}. A filtration is called 
fine if 

K(uf) = Û KJLJT) = Û ( H UM. - M^j) = Qx. 
a=l a=l \t=— oo / 
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A sequence of filiations Ji1, 0 ^ / < oo, where Jtl+Y refines Jl1 is called 
fine if O L̂o K(Jt*)—Q>x- We, of course, have the corresponding: 

PROBLEM 2. Given a finite amount of data about Ma, Ma_l9 and <f>t 

calculate ^ ( ^ ( u T ) ) . 

A vector field X e 9£r(M) has no Cj Q explosions if given a neighborhood 
U of £lx in M, there is a O neighborhood V of X in 3Cr{M) such that if 
Ye FthenüF<=£/. 

THEOREM 2.1. Let X e 2£r(M). The following are equivalent : 
(a) X has a fine sequence offiltrations; 
(b) X has no C° Q explosions; 
(c) X has a Cm Lyapunov function; 
(d) X has a C00 Lyapunov function. 

PROOF. That (a) is equivalent to (b) is the content of [11]. Now, given 
a fine sequence of filiations J(l for X, fix i and then find a C00 function 
Lf.M-^R such that DL^O on K(JH% X{Lt)<0 otherwise and 
L i(Xa(^#0)=a by Proposition 6 of [11] and [14]. Now choose constants 
Ci>0 such that 2 ci^% is a C°° function. So (a) implies (d) which obviously 
implies (c). To see that (c) implies (a), let L\M-+R be a Cm Lyapunov 
function for X. By Sard's theorem, the critical values of L are a closed 
nowhere dense subset of a closed interval. Let An={x0, • • • , xnJ be a 
partition of the interval with mesh ^1/n and the x{ regular values of L. 
Taking Aff==L_1(—oo, x j , /= l , - - - , / / & , and MW"+ 1=I we have a 
filtration ^ n for X. Refining An to ^4W+1 refines ~#w and we have a fine 
sequence. 

Of course, once again by Pugh's theorem [13] if C1 could replace C° in 
the theorem the genericity conjecture would be true in 9£\M). 

The Lyapunov function approach to the genericity problem has the 
advantage that it allows one to become even more rhapsodic, by hoping 
(a) that the vector fields with C00 Lyapunov functions are open and dense 
in 2£r(M) or 9C^{M). One may then hope that (b) the Lyapunov function 
may be selected in a locally smooth fashion for an open and dense set of 
vector fields and (c) that the Thorn-Mather theory of topological stability 
of mappings may hold in the sense that those vector fields with Lyapunov 
functions that are topologically stable for the local selection functions are 
open and dense. So, (d) the vector fields which are topologically ii-stable 
are open and dense (see [7]). Recall that X is topologically fi-stable if 
and only if there is a neighborhood of X, Ux, in SCT{M) such that if 
Ye Ux then Q.Y is homeomorphic to £lx. Finally, one may hope that 
(e) for an open and dense set of those vector fields having Lyapunov 
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functions, the flow (f>t has a dense orbit in Q, nL*1^) for any critical value 
c of L. 

While this list of properties is rather outrageous, there is so far no 
counterexample to my knowledge. There are also precious few examples 
outside of Smale's Axiom A and no-cycles vector fields and a class of 
examples which can be derived from [7]. If the program could be carried 
out a rather beautiful picture would emerge for almost all vector fields. 
They would have a topography. All the recurrence would be on the ridges, 
each ridge held together by a dense orbit, all other orbits would flow 
downhill and the topography would essentially remain unchanged under 
small perturbations of the vector field. 

In the end one might even hope for a general approach to the bifurcation 
problem for vector fields in terms of the bifurcations of the Lyapunov 
functions. I suppose that I have fantasized enough. In the next sections 
I will return to facts and theorems. 

III. A C° density theorem for diffeomorphisms. If one is going to make 
models of structurally stable or simplest diffeomorphisms in each isotopy 
class of diffeomorphisms, the first obvious question is: Does every isotopy 
class of diffeomorphisms contain a structurally stable diffeomorphism ? 
This question was essentially answered in the affirmative by Smale [23]. 
In [17] and [19], Smale's procedure is elaborated and analyzed some more 
to produce a C° dense set of structurally stable diffeomorphisms in each 
isotopy class, the nonwandering sets of which are easily describable by a 
finite collection of matrices which are closely connected to the homology 
theory of the map. The results in this section are entirely contained in 
[23], [17], and [19]. 

In order to produce structurally stable diffeomorphisms, we will 
produce Axiom A and strong transversality diffeomorphisms. Recall that 
ƒ e Diffr(M) satisfies Smale's Axiom A if and only if 

(a) £}(ƒ) has a hyperbolic structure; 
(b) £}(ƒ) is the closure of the periodic points of/. 
That £}(ƒ) has a hyperbolic structure means that TM\Q,(f), the tangent 

bundle of M restricted to Q( / ) ? may be written as the direct sum of two 
Tf invariant subbundles E*@EU such that there exist constants 0 < A < 1 , 
0 < C , and 

\\Tfn\Es\\ < CXn f o r n > 0 ; 

\\Tfn\Eu\\ ^ CXn f o r n < 0 . 

I f / e Diff%M) and x e M, 

W8{x) = {y e M \ d(fn(x),fn(y)) -> 0 as n -> oo}, and 

Wu(x) = {y G M I d(fn(x),fn(y)) -> 0 as n -> - oo}. 



32 M. SHUB [January 

If/satisfies Axiom A then Ws(x) and Wu(x) are 1:1 immersed Euclidean 
spaces for all x e M. If, moreover, Ws{x) and Wu(x) are transversal for 
all x G M, then ƒ is said to satisfy the strong transversality condition. 
Joel Robbins has proven : 

THEOREM [15]. Let f e Diff^M) be C2. If f satisfies Axiom A and the 
strong transversality condition then f is structurally stable. 

Recently, Clark Robinson has removed the condition that ƒ be C2. 
But for our purposes C2 is sufficient because we can perturb ƒ to be C°°. 

The first step in isotoping ƒ to a structurally stable diffeomorphism is 
to make it preserve a special filtration, a handle decomposition of M. 
Recall that a handle decomposition, Jf7, of M is a sequence of sub-
manifolds 0 c M o c - c M w = M where Mj-M^ = (J?Ji (D\X£>?~~j) 
and the D\ x D™~° are attached to the boundary of M ^ by disjoint 
embeddings. If f̂7 is a filtration for ƒ we will say ƒ G T#> if, moreover, 
f{D\ X 0) is transverse to 0 x D%~j for 1 <* ƒ, fc<?7i, and for ally. Iff G 7 > , 
ƒ(£>'• xO) intersects O x D ^ in a finite number, gj

ik, of points. We may 
form the geometric intersection matrix Gj—{g\k). We may also form the 
algebraic intersection matrix Aj = {a\k) where a\k is the number of points 
of intersection oîf{D{ x 0) with 0 X D%~3 counted with their signs. Aj may 
have negative entries but clearly \a\k\^.g\k. The A/s determine an endo-
morphism of the complex 

• H,(Mi9 M^) - i > H^(M^19 M,_2) -> • • • 

\A< ^ \ ^ 

> H,(Mi9 M^) - U H^M^MÔ-Ù -> • • • 

which induces ƒ* : i/* (M)-+H* (M) on homology. The G/s will be used 
to determine the nonwandering sets. If Jf is a filtration for ƒ we let 
Ü ~ Ü n ( M ó - M , _ ! > . Q , C ^ . 

DEFINITION. The subset /ƒ<= DifP(Af) is the subset of those diffeo-
morphisms ƒ G DifF(M) such that: 

(1) ƒ satisfies Axiom A and the strong transversality condition; 
(2) ƒ G Tjp for some handle decomposition 3tf of M\ 
(3) f\Kj is topologically conjugate to the subshift of finite type associ­

ated to the geometric intersection matrix Gó and ƒ \Cl{ is topologically 
conjugate to the subshift of finite type restricted to its nonwandering set. 

I will now explain (3). Note that the diffeomorphisms in H are 
structurally stable. I have used H to denote Smale's handle preserving, 
horseshoe diffeomorphisms; the difference here from Smale's [23] is the 
strong transversality condition and the identification of the ƒ \K{ in terms 
of the G> Let B—{bi0) be an nxn matrix. B is a 0-1 matrix if ô o = 0 or 1 
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for all i,j. Let iV=(l , • • • , « ) with the discrete topology and 2=n*-ooN 
have the product topology. The elements of 2 are of the form {aj*€z 
where ateN. The shift map cr:2->0S is defined by (r({ai}ieZ)={a'i}ieZ 

where a'i=ai+1. The 0-1 matrix B defines a a invariant closed subset of 
S, S 5 , by {«,}<eZ e £ # if and only if èa.a.+l = l. a r S ^ - ^ S ^ is a subshift 
of finite type. Now given a nonnegative nXn matrix G with integral entries 
we may associate a 0-1 matrix B to it as follows. Consider G:Zn-^Zn to 
be a linear map where Z n has standard basis el9 • • • , en. Let */*= 2*-i £**» 
and let m=2* ^ . 2* will be an m x m matrix and we think of it as operating 
on Zw . We consider Zm to be generated by 

and define 

( m—1 m 

i if 2 ft* < j = 2 ft*' 
0 otherwise. 

5 is the 0-1 matrix associated to G and orrS^-^S^ is the subshift of finite 
type associated to G. Now the assertion in (3) is that there is a surjective 
homeomorphism h mapping Kt onto HB such that hf=ah, etc. 

THEOREM 3.1. Any f e DifF(M) w isotopic to an element of H by a 
C° small isotopy. So H is C° dense in Diffr(M). 

Given f e H we may calculate the number of periodic points off of 
period m, Nm(f), via the geometric intersection matrices Gt. 

PROPOSITION 3.2. Let ƒ e /f. r/œ/i iVm(/) = 2* t r a c e G?\ 

We may in fact compute a sort of asymptotic Lefschetz inequality for 
diffeomorphisms in H. 

PROPOSITION 3.3. Let ƒ e # . 77*e« 

lim sup n~x log iVn(/) ^ max log |A| 

where the max is taken over all eigenvalues off^:H^(M9 Q)-+H*(M, Q). 

The reason for this is that the spectral radius of Gz is bigger than or 
equal to the spectral radius of the A{ (because \a3

ik\^gik; see [6]), which 
is bigger than or equal to the spectral radius of the f¥i:Hi(M9 g)-> 
Hi{M, Q), and in the trace formula of 3.2 there is no alteration of signs! 
I will return to this point later. 

The proof of Theorem 3.1 proceeds via fitting the diffeomorphism. 
Given the handle decomposition 3tf of M, call any disc of the form D) Xq 
where q e D™~% a core disc, ƒ is fitted with respect to 2tf if ƒ (core disc) 
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contains any core disc it intersects. Using standard techniques of differ­
ential topology and a double induction, any diffeomorphism may be 
isotoped to one which is fitted. This process essentially proves 3.1 by 
pulling along the core discs to get an expansion in the core disc direction 
and contracting along the transverse discs to assure the hyperbolic 
structure. So Theorem 3.1 may be modified to say that any ƒ is isotopic 
to a fitted element of H by a C° small isotopy. 

In some sense, fitted diffeomorphisms are the analogue for diffeo-
morphisms of handle decompositions for differentiate manifolds. I 
will pursue the analogue of Smale's theorem on the structure of manifolds 
to try to trace the simplest matrices that can occur for the G/s. Recall 
that we are limited by having the A/s, which are an endomorphism of a 
chain complex which arises from a handle decomposition of M and which 
gives the homology of M. g^ — l ^ l s o the m o s t efficient picture would be 
given by ^ = 1 ^ 1 - If-E is a matrix, \E\ denotes the matrix whose entries 
are the absolute values of the entries of E. 

In what follows a free chain complex will mean a free chain complex 
# , 0->Cm-^Cw_!-> •Ca-^Ci-^Co-^O, where m = d i m M . Henceforth, 
M will be assumed to be connected. 

THEOREM (SMALE [20]). Let Il1(M)=0 and dim M^6. If^ is a free 
chain complex with C 1 =0=C m _ 1 such that Hk(M, Z)=Hk(C, Z) for all 
k9 then tf is the free chain complex of a handle decomposition of M. 

Such a complex will be called a complex of M. The next theorem identi­
fies a class of matrices Gt which may occur as the geometric intersection 
matrices of a diffeomorphism isotopic to ƒ. It is stated somewhat differ­
ently than in [19]. Note that the hypothesis amounts to chain homotopy. 

THEOREM 3.4. Let n l ( M ) = 0 and dim M ^ 6 . Suppose that f e Diffr(Af) 
and that ê is an endomorphism of a chain complex *$ of M given as matrices 
Ei-If 

U :H*(M, Z) -> H*(M9 Z) = ^ :ff„(«\ Z) ^ H*{V9 Z) 
and 

U :H*(M9 Zw) -> H*(M, Zn) = £+:H+{V9 Zn) -> H^9 Zn) 

for alln, then f is isotopic to a fitted diffeomorphism in H with G^=|£J. 

This theorem reduces the problem of determining a large class of models 
of structurally stable diffeomorphisms to a purely algebraic problem. 
It is the main tool for the next section. Such an ê will be called an endo­
morphism of/. 

IV. Morse-Smale diffeomorphisms. The Morse-Smale diffeomorphisms 
are the simplest diffeomorphisms of all. They are the Axiom A and 
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strong transversality diffeomorphisms with a finite Q,. So their non-
wandering sets consist of a finite number of periodic orbits. Palis and 
Smale proved : 

THEOREM [12]. The Morse-Smale diffeomorphisms are precisely the 
structurally stable diffeomorphisms with a finite £i. 

In 1967 Smale [21] raised the question of which diffeomorphisms are 
isotopic to Morse-Smale diffeomorphisms. In the summer of 1971, I 
realized that a Morse-Smale diffeomorphism had to be quasi-unipotent 
on homology; that is, every eigenvalue of ƒ* :H*(M, Q)-+H*(M, Q) 
must be a root of unity or equivalently max log|/l|=0 where the max is 
taken over all eigenvalues of/*. But actually more can be said. The matrix 

( P1 * • • • * \ 

0 Pj 

where each P{ is a signed permutation matrix (with ±l 's) is called a 
virtual permutation. 

THEOREM 4.1. IffeDiftr(M) is Morse-Smale, then there is a finite 
length chain complex *€ of finitely generated abelian groups • • '~>Ci+1 -̂ > 
Q->' • • with a chain automorphism ^ = { Q —>Fi CJ so that 

(1) the F{ are virtual permutation matrices; 
(2) the pair (fé7, S?) is equivalent to a geometric chain map induced by f 
For simply connected manifolds of high dimension, we can give neces­

sary and sufficient conditions. 
THEOREM 4.2. Let n3(Af)=0 and dimM^6. Then f e Diïïr(M) is 

isotopic to a Morse-Smale diffeomorphism if and only if there is an endo-
morphism ê of f such that Et is a virtual permutation for all i. 

Now by a theorem of Bowen [2], the entropy of a map is equal to the 
entropy of that map restricted to its nonwandering set. So the entropy of 
a Morse-Smale diffeomorphism is zero. Consequently, at least for the 
isotopy classes described in Theorem 4.2, we can construct a simplest 
diffeomorphism, in fact, a fitted element of H. 

PROBLEM 3. Are the only structurally stable diffeomorphisms with zero 
entropy the Morse-Smale diffeomorphisms 1 

A positive answer to this problem would justify calling the Morse-
Smale diffeomorphisms the simplest of all in the sense of simplest above. 
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A negative answer would be rather startling because it would contradict 
the conjecture of Palis and Smale that the structurally stable diffeomor-
phisms are precisely the Axiom A and strong transversality diffeomor-
phisms. 

Theorem 4.2 may also be stated as follows: The homology class of 
graph ƒ can be constructed by a virtual permutation of a chain complex 
for the manifold. Finding such a virtual permutation of a chain complex 
of course implies that /* is quasi-unipotent. But the converse is not true. 

THEOREM 4.3. Let n i ( M ) = 0 and d i m M ^ ó . Let /EDifT(M). Then 
there exists an n>0such thatfn is isotopic to a Morse-Smale diffeomorphism 
if and only iff* :H*(M, Q)->H*(M, Q) is quasi-unipotent. 

The reason we have to take a finite power and cannot get by with ƒ 
itself is because of an obstruction closely related to the ideal classes of 
the cyclotomic fields. This obstruction is nonzero, according to R. G. 
Swan. 

To give an example, suppose H*(M) is torsion free. If f^^H^M)-^-
H^M) may be put in the form 

where each At is equivalent over Z to the companion matrix of its charac­
teristic polynomial then ƒ is isotopic to a Morse-Smale diffeomorphism. 
Of course, I am assuming here that II1(Af)=0 and dim .M^6. The 
obstruction is analyzed somewhat more in [19]. 

V. Entropy. For Axiom A diffeomorphisms Bowen [2] proved : 

THEOREM. A(/)=lim sup n"1 log Nn(f). 

So it now follows from the asymptotic Lefschetz inequality of Proposi­
tion 3.3 that iff e H, then 

(*) / z ( / ) ^max log |A | 

where the max is taken over all eigenvalues of/* :H*(M, Q)-+H*(M, Q). 
The main problem I want to consider here is the extent to which (*) holds. 
Combining the density theorem with Nitecki [10] gives : 

THEOREM 5.1. (*) holds for an open and dense set ofDif£r(M) in the 
C° topology. 

In fact, it seems fairly clear that Diffr(M) may be replaced by Endr(M) 
the space of Cr endomorphisms of M. 
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CONJECTURE 3. (a) (*) holds for all smooth mappings of compact 
differentiable manifolds', 

(b) (*) holds f or all Axiom A and strong transversality diffeomorphisms. 

Conjecture 3(a) of course implies (b), but there is more evidence for (b). 
Bowen, for example, has proven (b) when Q, is O-dimensional. Conjecture 
3(a) would be a rather striking theorem, generalizing in a sense I will 
describe below the Lefschetz fixed point theorem. Conjecture 3(b) is 
rather important in its own right if only for the restrictions it imposes on 
simplest diffeomorphisms. 

The Lefschetz number of / n is given by L(fn)=^ (—1)* trace ƒ ^ so 
we may form the asymptotic Lefschetz number of/. 

/ ( / ) = l imsupn- 1 log |L(/ n ) | . 

If X is an eigenvalue of largest modulus for ƒ * and all other eigenvalues 
of the same modulus occur in dimensions of the same parity, then / (ƒ)= 
log|A|. In other words, the asymptotic Lefschetz number is log|A| unless 
there is some cancelling out in the trace formula due to the alteration of 
signs. 

L( / n ) = 2p6Fix fn a(P) where a is the index of P, if all the fixed points 
of fn are isolated. So the Lefschetz number counts the fixed points of fn 

with their indices. This raises an immediate problem about 1(f) itself. 

PROBLEM 4. Suppose ƒ: M-+M is smooth. If the fixed points of fn are 
isolated for all n, is lim sup rr1 log Nn(f)^.l(f)7 

This is true for Kupta-Smale endomorphisms which are a generic set 
in Endr(M) (see [16]). Conversations I have had with Dennis Sullivan 
make it seem very likely (almost a proven theorem) that if /(ƒ)>() then 
Nn(f)-+ oo. So the asymptotic Lefschetz number should give an estimate 
of the asymptotic growth of the periodic orbits, but suffers from the 
alternation of signs. If we drop the alternation of signs in the formula, 
we get max log|X\ all the time and hopefully estimate the asymptotic growth 
rate of the orbits, i.e., the entropy. For example: start with any diffeo-
morphism ƒ : M-*M, consider ƒ x 0:Mx S^M X S1 where 6 is an irrational 
rotation of S1. Then 1(f)=0 and there are no-periodic points. But h(f x 0)= 
h(f), so if/satisfies (*) so doesƒx0. 

Problem 4 and (*) both fail for homeomorphisms of complexes and 
continuous maps of manifolds, so the smoothness seems crucial. Given 
ƒ: X-+X we can construct the suspension of f S(f) : S(X)-+S(X). Now 
compose S(f) on the left with a map which pushes down from the north 
pole of the suspension to the south pole, g. 
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The new nonwandering set is just the north and south poles which are the 
only periodic points. On the other hand l(g o ƒ)=ƒ(ƒ) and max log|A| is 
unchanged. 

There is something which may be said about continuous endomorphisms 
of finite complexes which follow directly from Franks [5]. 

PROPOSITION 5.2. Let K be a finite complex, and let f:K-+K be con­
tinuous and have a fixed point. Let Zk<^Hx(K) be invariant for fn. Suppose 
that pl9 • • • , pk£Zk and pxu • * 'U p ^ O . Suppose also that f*:Zk-+Zk 

has no eigenvalue of absolute value one. Then /*(ƒ)§:2 log|A| where the 
sum is taken over all eigenvalues X off*:Zk-+Zk with |A|>1. 

The most natural place to apply this proposition is to the «-torus, Tn. 
There one sees that those elements A of SL(n9 z) which have no eigen­
values of absolute value one (the linear Anosov diffeomorphisms) are 
simplest diffeomorphisms. 

Finally, I would like to return these considerations to the problem of 
finding simplest diffeomorphisms. The first problem here is to determine 
if the elements of H will provide simplest diffeomorphisms if they do 
exist in an isotopy class. 

PROBLEM 5. Iff is structurally stable (or Axiom A and strong trans-
versality), does there exist a g isotopic to f so that g E H and h(g)^h(f)l 

Bowen [3] and Manning [8] are very relevant here. An affirmative 
answer to this problem would, of course, prove Conjecture 3(b). 

PROBLEM 6. Let JÎ be an isotopy class in Diffr(M). When does there 
exist a g e Hc\JÎ so that equality holds in (*) for gl 
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If max loglX\ =0, such a g would have to be Morse-Smale by Bowen [2]. 
So the theorem above about Morse-Smale diffeomorphisms is a first step 
in this direction. There was an ideal class problem there. It is also possible 
that equality cannot be achieved for more simple reasons. Let M be the 
connected sum of Sz X Sz with itself four times 

M = S* x S3#S3 x S3#S3 x S3#S3 x S3. 

M is an n—1 connected In manifold so we may apply Wall's theory [24]. 
H3(M)=Q)8 Z and is the only relevant group for our problem. By Wall's 
theory given an automorphism A of HS(M) there will be a diffeomorphism 
Â of M which induces this automorphism if A preserves the intersection 
matrix, K, on HZ(M) which is the 8x8 matrix 

which may be put in the form K'=(Ji £) over Z. 
In this new basis we are looking for a matrix A' such that A'tKA'—K. 

But now any matrix of the form 

\o (B-v) 
will do. Choose B to be the companion matrix of the polynomial 
X*+X+l. Now, some Galois theory (for which I am indebted to Nick 
Bourgoyne and Marvin Greenberg) will show that (1) not all of the roots 
of this polynomial are roots of unity times a real number, and as is 
easily seen (2) all the roots are complex. 

Now having constructed an element of H, g, isotopic to the Â produced 
in this way, we have 

C3^C, and Hz(m)^Hz(M) 

and \a*j\^g% for all i, j . By the theory of nonnegative matrices [6], if 
the maximum modulus of an eigenvalue of Gs equals the maximum 
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modulus of an eigenvalue of A3 then all the eigenvalues of Az of this 
modulus are real numbers times roots of unity. Since the eigenvalues of A 
are eigenvalues of As, the choice of A implies that the spectral radius of 
<73 is strictly bigger than the spectral radius of A. But by the above for 
any g e H 

h(g) = lim sup vT1 log Nn(g) 

— lim sup ÏT1 l og (2 t r a c e Gf) 

= max log |A|, 

where the max is taken over all the eigenvalues of the geometric intersection 
matrices Ĝ  for g. This proves that for any g e H which is isotopic to A9 

h(g)>max log|A|. So the difficulty in finding an element of H which 
achieves equality in (*) lies at least in the problems of the ideal classes and 
in the problem of increasing the eigenvalues of a matrix when the absolute 
value is taken (this is actually how the ideal classes came up in the first 
place). Neither of these connections seems to be well understood. 

If the answer to Problem 5 is yes, there will be isotopy classes for which 
an affirmative answer to the following problem would indicate the non­
existence of a single simplest diffeomorphism. One would have to use a 
sequence. 

PROBLEM 7. Let J> be an isotopy class in DifP(M); does there exist a 
sequence of diffeomorphisms fne f C\H such that /*(/n)->max log|A| 
where the max is taken over all eigenvalues of 'ƒ* : H* (M, Q)-+H% (M, Q) ? 
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