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ABSTRACT. Siegel modular forms ƒ of degree two are considered 
which satisfy: (1) the Fourier coefficients bf(R), for R a positive definite, 
semi-integral, primitive matrix, are solely a function of det(i^); and 
(2) ƒ is an eigenform for the Hecke algebra whose eigenvalues satisfy 
certain relationships. For such forms, results about multiplicative 
relationships and asymptotic growth are given, and formulae are 
given for bf(R) with R arbitrary in terms of bf(T) with det(2T) square-
free. 

Hecke operators play a vital role in investigating multiplicative 
relations among Fourier coefficients of modular forms of one complex 
variable. In this paper, we show that, for a certain class of Siegel modular 
forms of degree two, Hecke operators play a similar role in determining 
relations among Fourier coefficients. 

Let f(Z) be a Siegel modular form of degree two and weight w. Then 
f(Z) has a Fourier expansion of the form/(Z) = X^> 0 bf(R)e(RZ), where 
Z is a point in the Siegel upper half plane of degree two, R runs through 
all positive semidefinite, semi-integral 2 x 2 matrices, and e(RZ) = 
exp[27ii • Trace(i^Z)]. If R = (£ £), with a, c, 2b integers, then we set 
gcd{R) = gcd(a, c, 2b). We will denote the determinant of a matrix A by 
14. 

We now define the Hecke operators (degree two) on the space J ^ of 
all Siegel modular forms of degree two and weight w. Let 

/ = ( _° M , &(n) = {Me GL(4, Z): MlJM = nJ}. 

For ƒ in J2^, n a positive integer, and M in J£?(«), we write M in blocks of 
2 x 2 matrices as M = (£ ^) and define 

(f\MtZ) = \Mr'2 \CZ + D\-»f[_(AZ + B\CZ + D)"1]. 

Noting that one can write ££{ri) = (J if(1)^4, a finite, disjoint union, we 
define the unnormalized Hecke operator T(n):^w -» ̂ w^sf\T(n) = Y f\A. 

AMS {MOS) subject classifications (1970). Primary 10D20, 32N15, 42A16. 
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Formally one has [3, Satz 2] , 
00 

£ T(»>r» = n * W ) . 
n = l p 

where the product is over all primes. In [2, Theorem 2] we show that 
formally 

T(p; x) = (1 - p2x2) 

x [(1 - p2x2)il - p4x2) - T(j?)ix + p3x3) + /?M/>)*2]_1, 

where Wip) = (1//?)[T(/?)2 - T(/?2)] + />3. (See also [8, Theorem 2] and 
[7, Appendix I, Equation 21].) 

We shall be considering ƒ in ^ which are eigenforms for all the Tin). 
We shall denote its eigenvalues under Tip) and Wip) by Tp>f and XvJ, 
respectively. In particular, we shall be interested in forms ƒ satisfying 
two additional properties, viz.: 

Property I. For R primitive (i.e. gcd(jR) = 1) bfiR) is solely a function 
of|J?| and 

Property II(/?). For the prime/?, Xvf = ip + 1)TP>/. 

Property I is true for Eisenstein series [4, Satz 1] and appears to be 
probable for the unique cusp form of weight 10 on the basis of numerical 
data [6, p. 30] and for the unique cusp form of weight 12 for theoretical 
considerations. Property Hip) is true for all primes/? for Eisenstein series 
and we shall show (Theorem 4) that, in a number of cases, Property I 
implies Property Hip). (This is true in particular for all/? for the cusp form 
of weight 12.) 

The appearance of Property Hip) is related to the factorization of Tip) 
and Wip) as [2, p. 28 and Lemma 9] : 

ip + \)Tip) = Up) • Mip) and W(p) = L(/?) • V(p) • M(p), 

where L(/?), Vip), and M(/?) are Hecke operators of the Koecher type 
[1, p. 361]. Here, Vip) is an involution. 

We prove: 

THEOREM 1. Let ƒ in ^w be an eigenform for the Hecke algebra and 
suppose f has Property I. Then bfiR) depends solely on gcd(i?) and \R\. 

Note. Theorem 1 for Eisenstein series follows from a correction of 
[4, Satz 2] in [5]. 

Let 

bf[airur2,r3)~] = bf 
1 I3/2V 

/2 r2 )_ 
r 

r3/2 

for a, rx, r2, r3 integers;/? and q denote distinct primes;y, z, s, and t denote 
formal power series variables; xpw = pw~2; iA/B) = Jacobi symbol, 
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({2A + l)/2) = 1, for integers A and B; 

Af(p; t) = 1 + (p + 1 - p-\j)xp%wt + px2
p,wt2; 

Df(p; y, z) = (1 - /?xp,w>>) Ax(/?; j ) Af(p; z2); 

PJiPiy,z) = (1 -pxl^z2); 

yf(M9p;y, z) = [1 - (-M/pjXp^yjpJ.p;y,z) - {-M/p)xp^z2 Af(p; y); 

and for positive integers C and T with (CT, pq) = 1, we set 

#/(/>, ?; C, T; y, z, j , 0 
00 

= I */[Q»"^l,/»-«»r,0)]y2»1s«/»D /(/>;^z)D /to;*,0. 
m,n,a,b= 0 

We prove: 
THEOREM 2. Lef/? and q be distinct odd primes, C and T positive integers 

such that (CT,pq) = 1. Let f in #"w be an eigenform for the Hecke algebra 
and suppose f has Properties I, II(p), and 11(g). Then 

Hf(p, q; C, T; y, z, s, t) = yf(T, p; y, z)yf(T, q; s, t)bf\C(\, T, 0)] 

+ yf(pT, q; s, t)Pw(p; y, z)zbf{Ql,pT, 0)] 

+ 7f(qT,p; y, z)pw(q; s, f)/6, [ Q l , qT, 0)] 

+ pw(p; y, z)pw(q; s, t)ztbf[C(l,pqT, 0)]. 

THEOREM 3. Let p be an odd prime. Let f in ?FW be an eigenform for the 
Hecke algebra and suppose f has Properties I,11(2), and \\(p). Let C and T 
be positive integers such that (CT, 2p) = 1. Then 

Hf(p,2; C, T ; y , z , s , t) = pw(2;s, t)yf(T,p;y,z)bf[_C(l, T,0)] 

+ j?w(2; s, t)yj{2T,p; y, z)tbf[C(l, 2% 0)] 

+ jöw(2; S, t)Pw(p; y, z)zbf[C{i,pT, 0)] 

+ PJL2; s, t)Pw(p; y, z)ztbf\C{\, 2pT, 0)] 

+ [ l - ( - l / p T ) ] * 2 > w 

• { ^ ( 1 , 2 ^ , 0 - ^ ( 2 ; s,t)} 

•pw{p;y,z)zbf{C{^pT+\),U\)-\ 

+ [i - (- imK.(r /(U;M) - M2;s,t)} 
yf(T,p;y,z)bf[C$(T+l),i,\j]. 

If M and N are positive integers such that M = 3 (mod 4) and N = 1 
(mod 2), then: 
bflN(l,M,0j] 

= { 2 " 1 X 2 ) W T 2 ) / - [3 + (2/M)-]x2Jbf[NÜ(M + 1), 1,1)]. 
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THEOREM 4. Let f in J \ , be an eigenformfor the (degree two ) Heche algebra. 
Let 

= Z 0i(Zl)#i(Z2)> 
i 

where the gt are modular forms of one complex variable of weight w which 
are eigenforms for the (degree one) Hecke algebra. 

(1) If f has Property I andbf(\, 1, 0) / 0, then f has Property 11(2). 
(2) Ifp is an odd prime, f has Property I, and\_p — ( — 3/p)]bf(l, 1, 0) + 

[p - ( —l/p)]2ôr(l, 1, 1) T* 0, then f has Property ll(p). 

Let 
bf((R» = bf(l,\R\,0), |*| e Z, 

= M*I + i , i , i ) , 1*1 *z. 
We shall prove the following theorem which includes some of the con­
jectures of [6]. The proof of Theorem 5, Parts 2a, b below for Eisenstein 
series will appear shortly in [5] via very different methods. 

THEOREM 5. (1) If f is the normalized Eisenstein series of weight w then f 
has Property I and Property ll(p)for all primes p. In particular 

XP,f = PXPM1 + PXpJi1 + *p,w)-

Also, for any e > 0 and R positive definite, 

bf(R) = 0(|*r-(3/2)+£), 

where the implied constant depends only on w and e. 
(2) Let ƒ in ^w be an eigenform for the Hecke algebra and suppose ƒ has 

Property I and Property ll(p) for all primes p and x2,f # 4, 8. Then, for 
semi-integral, positive definite R, 

(a) bf(R) = I d"-%((Rld», 
0<d|gcd(jR) 

and 

(b) bf(NS)bf(MS) = bf(NMS)bf(S), 

for S a primitive matrix and relatively prime positive integers M and N. 
If, in addition, \p + 1 — P~1tPtf\ S 2y/p for all primes p, then for any 

e > 0 and R positive definite 

bf(R) = 0([gcd(*)]1 / 2 |* | ( 2 w-3 ) / 4 + e) , 

where the implied constant depends only on f and G. 

Note. If Xi2 a n d Zio a r e t r ie unique normalized cusp forms of weight 
12 and 10, respectively, then [6, pp. 37-38] and Theorem 4 imply that 

ƒ 
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ifXio a n d X12 have Property I, then: 
(a) %12 has Property II(/?) for all primes/?, and 
(b) #10 has Property II(/?) whenever (3/p) ^ 1 or p = 2. 
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