
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 79, Number 5, September 1973 

PERTURBATION OF SEMIGROUPS ON LOCALLY CONVEX 
SPACES1 

BY BENJAMIN DEMBART 

Communicated by François Treves, December 18, 1972 

1. Introduction. The results announced here deal with the perturbation 
of a one-parameter semigroup of operators on a locally convex space. 

Historically the study of the semigroup {Tt:t ^ 0} with infinitesimal 
generator A has depended heavily on the relation between the semigroup 
and the resolvent of the generator (X — A)"1 = R(X, A) given by the 
Laplace transform 

(1) R(X,A) = \e-»Ttdt. 

This relation is central to the study of semigroups on Banach spaces 
[2, pp. 360-364], equicontinuous semigroups on locally convex spaces 
[9, pp. 246-248], and distribution semigroups [5]. However, if Tt is a 
semigroup on a locally convex space, and Tt is not equicontinuous, then 
(1) may diverge for every complex X and A will have no resolvents. In this 
case it may be possible to devise a generalized resolvent (see [4] and [7]) 
to replace the classical resolvent. 

It is customary to associate the semigroup Tt with the homogeneous 
evolution equation (Cauchy problem) 

(2) (d/dt)f = Af with/(0) = W 

having solution f(i) = Ttu. Here we take a different point of view and 
consider the inhomogeneous equation 

(3) (d/dt)f = Af + g with/(0) = 0. 

Phillips [7, §6] discusses (3) on Banach spaces and concludes that if A 
is the generator of a strongly continuous semigroup, (3) has the solution 

(4) f{t) = Tt_sg{s)ds. 

Kato [3, pp. 486, 487] proves the uniqueness of the solution. 
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The uniqueness of the solution to (3) is equivalent to the existence of 
(d/dt — A)'1 as an operator on certain vector valued functions. The 
operator (d/dt — A)'1 is formally just the inverse Laplace transform of 
the resolvent (X — A)'1, and (d/dt — A)'1 will be extended to define the 
generalized resolvent used here. 

Phillips [7, §6] points out the similarity between (3) and the perturbed 
homogeneous equation (d/dt)f ~ Af + Bf, and uses the solution to the 
former to derive the perturbed semigroup. These methods suggest the 
potential usefulness of the above generalized resolvent in solving the 
perturbation problem. 

2. The generalized resolvent. Let E be a sequentially complete Haus-
dor if locally convex topological vector space. A collection T of continuous 
seminorms on E generating the topology of E is called a calibration for E. 
The calibration consisting of all continuous seminorms will be denoted 
by A. A semigroup on E is a collection of operators {Tt:t ^ 0} <=. S£(E) 
satisfying TtTs = Tt+S and T0 = I (the identity operator). The semigroup 
is said to be of class C0 if the map t -• Tt is continuous in the strong 
operator topology; it is locally equicontinuous if, for some a > 0, 
{Tt:0 ^ / S a} is equicontinuous. The infinitesimal generator A of the 
semigroup Tt is defined by 

Au = l im{r \Ttu - u):t -• 0} 

with domain Q)(A) consisting of those vectors u for which the limit exists. 
REMARKS. If Tt is locally equicontinuous then {Tt:0 ^ t ^ a'} is 

equicontinuous for every a' > 0. If Tt is of class C0 and E is barrelled then 
Tt is locally equicontinuous [4] . 

The operators (À — A) and R(À, A) act on the space E, but the operator 
(d/dt — A) acts on the space of E valued functions of the real line. In order 
to obtain a vector space of functions in which (3) has unique solutions we 
must consider only functions vanishing at 0. We denote by Xa the space 
of all continuous E valued functions on the interval [0, d\ that vanish at 0. 
When there is no chance of confusion X will be used instead of 3Êfl. Two 
topologies will be needed on X. 

DEFINITION 1. (a) Suppose T is a calibration for E and peT. Let 
pM) = sup{p(f(t)):te[Q,a]}. Let T00 = {pm:peT}. T00 calibrates 
the topology ^° ° of uniform convergence on [0, a ] . 

(b) Let pt(f) = \a
0p(f(i))dt. Let T1 = {p^.peT}. T1 calibrates the 

topology ^" 1 of L1 ([0, a]) convergence. 
REMARK. The topologies 3~™ and ST1 are independent of the choice of 

the calibration T. 
The operators d/dt, A, and (d/dt — A)'1 must all be considered as 

acting on the space 3Ê. 
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DEFINITION 2. (a) The operation of differentiation on 3Ê is denoted 
by D. The domain of D is 

0(D) = {ƒ e X :(d/dt)f e X} and D / = (rf/rf*)/. 

(b) The operation of pointwise action by an operator A (or B) is 
denoted by 91 (or 93), 0(91) = {feX:f(t) G 0(,4) for r G [0, a] and the 
map t -* 4 / (0 is continuous}. (9I/)(0 = 4( ƒ(*)). 

Let <b denote the set of real valued C00 functions of the real line with 
supports contained in [0, a ] . 

The basic relationship between the solutions to (2) and (3) can now be 
stated. In order for (2) to have solutions for sufficiently many initial 
values w, it is necessary and sufficient that (3) has solutions ƒ for sufficiently 
many g in 3Ê, and for each p e A there is a q e A such that /?«>(ƒ) ^ #i(sr). 

THEOREM 1. Let E be a sequentially complete locally convex space. An 
operator A is the infinitesimal generator of a locally equicontinuous semi­
group Tt of class C0 if and only if: 

(I) A is closed and densely defined. 
(II) There exists an operator 91 G if(3Ê, ^°°) satisfying: 

(a) 9i(D - « )ƒ = ƒ for all f e 0 (D - 91). 
(b) If ƒ G 0(D) tóe* 91/ G 0(D) aw/ D9t/ = 5RD/. 
(c) ƒƒ ƒ G 0(91) then « ƒ G 0(91) andWfif = «91/. 
(d) For eac/* /? G A tóere is a q e A such that p^fflf) = tfi(ƒ) / ö r #// 

The operator 91 is the generalized resolvent and is given by 

(5) (ng){t) = [jt_sg(s)ds 

just as solutions to (3) are given by (4). The proof that 91 as defined by (5) 
satisfies (II) is straightforward. 

The converse is proved by taking a sequence {$„} a <!> that satisfies 
(i) Ut) ^ 0, 

(ii) supp(</>„) c [0, 1/n], 
(iii) | u œ ^ ) A = 1. 

Such a sequence is an approximate identity. For </> G ®, <j> <g) ueX is 
defined by 0 ® w(/) = (/>(̂ )w for every ue E. The semigroup Tf is then 
defined on (0, a] by Ttu = lim{(9l^)n (x) w)(/):w -• oo}. 

Conditions (II)(a), (b), (c) imply Tt is a semigroup. Condition (II) (d) 
guarantees that the limit exists and is continuous and equicontinuous on 
(0, a). Furthermore Ttu -> u as t -» 0. Hence Tt can be extended to 
[0, oo) giving a locally equicontinuous semigroup of class C0. 
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Perturbation problems require the study of operators A that need not 
be closed. A more technical version of Theorem 1 can be proved for 
densely defined operators A that guarantees the closure Cl(A) exists and 
is the generator of a locally equicontinuous semigroup of class C0. 

3. Perturbation by relatively bounded operators. Phillips [7, §3] studies 
the perturbation of a semigroup on a Banach space by the addition of a 
continuous operator B to the generator A, He shows that the resolvent of 
the perturbed generator A + B is given by 

(6) R(k, A + B) = Y< W > A)[BB{X9 Aj]n:n = 0, 1,. . . }. 

Miyadera [6] considers the larger class of perturbing operators B satisfy­
ing: 

(a) 9(B) => 9(A) and BR(X, A) e S£(E) for some A. 
(b) For some K > 0, ƒ J ||B7;w|| dt S K \\u\\ for all u e 9(A). 
He shows that if B satisfies (a) and (b), then for \z\ sufficiently small 

A + zB is the generator of a semigroup. The theory was further generalized 
by Babalola [1] to quasi-equicontinuous semigroups on locally convex 
spaces with some additional restrictions on the perturbing operator B. 

Miyadera's condition (a) is equivalent to the following relative bounded-
ness condition: 

(a') 9(B) 3 9(A) and there exist nonnegative constants L and M 
satisfying ||Bu\\ ^ L ||u|| + M \\Au\\ for all u e 9(A). 

DEFINITION 3. Suppose A and B are operators on a locally convex 
space E. B is called relatively hounded with respect to A if: 

(i) 9(B) => 9(A). 
(ii) For each p e A there is a q e A satisfying p(Bu) S q{u) + q(Au) for 

all u G 9(A). 

THEOREM 2. Let E be a sequentially complete locally convex space. Let 
Tt be a locally equicontinuous semigroup of class C0 with generator A. 
Let B satisfy: 

(I) B is relatively bounded with respect to A. 
(II) There is a calibration T for E and a K > 0 such that Jj p(BTtu) dt ^ 

Kp(u) for all u e 9(A), p eT. 
If \z\ < K" 1 , then A + zB is closable and Cl(A + zB) is the generator 

of a locally equicontinuous semigroup of class C0Tt(A -f zB). 

The theorem is proved by defining a perturbed generalized resolvent 
9{(A + zB) satisfying condition (II) of Theorem 1. Equation (6) suggests 
the defining formula 

W(A + zB) = £ {WlzBnf'.n = 0, 1,. . .} 
that is used. 
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We will sketch a proof of the fact that MM + zB) satisfies condition 
(II) of Theorem 1 under the assumption that A and B are continuous 
operators on E. 

REMARK. Even in the simplified case of continuous A and B the result 
is still of interest. In fact, one reason for studying operators on locally 
convex spaces is because locally convex topologies can be chosen to make 
operators continuous. 

PROOF SKETCH FOR THEOREM 2. From Theorem 1 for M we have 
3tM/ = DM/ - f and M3I/ = MD/ - ƒ for every ƒ G S>(D). It is also 
clear that ®(D) is invariant under 31, 95, and M. We now show that 
MM + zB) satisfies condition (II) of Theorem 1. For (II)(a) 

MM + z£)(D - (91 + zSB))f = £ (zM93)wM(D - 31 - z93)/ 

= £ (zWBff - £ (zMSy(zMS)/ = ƒ 

for ƒ e 0(D). Condition (II)(b) is immediate. For (II)(c) 

SIMM + zB)f = DMM + zB)f - ƒ - zSMM + z£) / 
or 

(31 + z®)MM + zB)f = DMM + z£) / - ƒ. 
Similarly 

MM + zBf&f = MM + z£)D/ - ƒ - zMM + *£)»ƒ 
or 

MM + z£)(3I + z95)/ = MM + zB)T>f - f 

for ƒ G 0(D). Condition (II)(c) follows by extension. A straightforward 
calculation shows condition (II)(d) follows from hypothesis II and equation 
(5). 

4. The perturbed semigroup. Phillips [7, §3] gives the following formula 
for the perturbed semigroup: 

(7) Tt(A + £) = X { S n « : « = 0 , l , . . . } 

where S0(t) = Tt and Sn(t) = f0 T.BS^^t - s) ds. A modified version of 
this formula is valid in the present setting. 

The operators Sn(t) for t e [0, à] are defined inductively. Let 5_ t(t) = 0, 
S0(t) = Tt. 

LEMMA 3. Let E, Tt, A, B, T, and K be as in Theorem 2. Assume 
{Sn{t):te [0, a ] , 0 ^ n ^ N} c ^(E) satisfies: 

(IM) For eac/z /? G T there is a qeT [depending on p but independent of n) 
such that p(Sn(t)u) S Knq(u) for all ue E. 

(IIn) Sn(t) is a continuous function of t in the strong operator topology. 
(Il lJ d/dtSn(t)u = Sn(t)Au + Sn.t(t)Bu for all u e 9(A), for each 
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0 <; n <. N. Then SN + 1(t) defined by 

SN+1(t)u = SN(s)BTt_su ds for all u e <2>(A) 
Jo 

can be extended to an operator SN+1(t) satisfying (IN+i), (II^ + i)? and 
(III* + 1). 

THEOREM 4. If E, Tt, A, B, and K are as in Theorem 2 and if \z\ < K'1 

the perturbed semigroup Tt(A + zB) is given by 

Tt(A + zB) = £ {znSn(t):n = 0, 1,. . . } for t e [0, a ] . 

REMARK. It follows easily from Theorem 4 that the perturbation is 
analytic. That is, for \z\ < K'1, the map z -» T/.4 + z,ö) is holomorphic 
into J?b(E) (the continuous operators with the topology of uniform 
convergence on bounded sets). 
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