THE FACTORIZATION OF AN INTEGRAL MATRIX INTO A PRODUCT OF TWO INTEGRAL SYMMETRIC MATRICES ${ }^{1}$

BY OLGA TAUSSKY

Communicated on January 31, 1973
A theorem going back to Frobenius, but refound repeatedly (for references see [5], generalized to arbitrary fields states:
Every $n \times n$ matrix $A=\left(a_{i k}\right)$ with elements in a field F is similar to its transpose A^{\prime} :

$$
\begin{equation*}
A^{\prime}=S^{-1} A S \tag{1}
\end{equation*}
$$

where S can be chosen symmetric and with elements in F. This is equivalent to the fact that every A can be expressed in the form

$$
\begin{equation*}
A=S_{1} S_{2} \tag{2}
\end{equation*}
$$

when S_{1}, S_{2} are symmetric, with elements in F where S_{1} is nonsingular.
Here a new concept is introduced. It is a form of degree n associated with the matrix. ${ }^{2}$ For relation (1) implies

$$
\begin{equation*}
S A^{\prime}=A S . \tag{3}
\end{equation*}
$$

This leads to a set of linear equations for the elements of the symmetric matrix S. If A has all its roots different (though the general case leads to relevant results too) then the number of F-independent symmetric solutions S of (3) is n. The elements of S are then linear forms in n parameters and det S is a form of degree n in n variables. It is this form which plays an important role. If A is replaced by a matrix similar to A then S undergoes a congruence transformation and the form is multiplied by a square factor in F.

For $n=2$ relation (3) leads to a single equation in 3 variables. This equation is given by

$$
\begin{equation*}
a_{21} x_{1}+\left(a_{22}-a_{11}\right) x_{2}-a_{12} x_{3}=0 \tag{4}
\end{equation*}
$$

[^0]if $S=\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{2} & x_{3}\end{array}\right) \cdot{ }^{3}$ Apart from a multiple this form is given by

$$
\begin{align*}
& a(\lambda, \mu)= \\
& \quad\left(\alpha_{1} \alpha_{3}-\alpha_{2}^{2}\right) \lambda^{2}+\left(\alpha_{1} \beta_{3}-2 \alpha_{2} \beta_{2}+\alpha_{3} \beta_{1}\right) \lambda \mu+\left(\beta_{1} \beta_{3}-\beta_{2}^{2}\right) \mu^{2} \tag{5}
\end{align*}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and $\beta_{1}, \beta_{2}, \beta_{3}$ are a pair of independent solutions of (4). It can be shown that the discriminant of (5) and the discriminant of the form

$$
\begin{equation*}
a_{21} x^{2}+\left(a_{22}-a_{11}\right) x y+a_{12} y^{2} \tag{6}
\end{equation*}
$$

differ by a square factor. The latter discriminant is also the discriminant of the characteristic polynomial of A.

The emphasis of the present research is on the case where A in (2) is a rational integral matrix and on the question under what circumstances

$$
\begin{equation*}
A=S_{1} S_{2}, \quad S_{i}=S_{i}^{\prime}, \quad S_{i} \text { with elements in } Z \tag{7}
\end{equation*}
$$

For $n=2$ a number of results have been obtained in [6], [7], e.g.:

1. If $\operatorname{gcd}\left(a_{21},\left(a_{22}-a_{11}\right), a_{12}\right)=g$ then the discriminant of (5) and of (6) coincide apart from the factor g^{2}. Here the solutions $\alpha_{1}, \alpha_{2}, \alpha_{3}$; $\beta_{1}, \beta_{2}, \beta_{3}$ are assumed to be integral basis vectors for the lattice of all integral solutions of (4).
2. Let the characteristic polynomial of A be $x^{2}-m$, when $m \equiv 2,3(4)$ and square free. Then (7) can only hold if the ideal class associated with A by the relation

$$
\begin{equation*}
A\binom{\alpha_{1}}{\alpha_{2}}=\alpha\binom{\alpha_{1}}{\alpha_{2}} \tag{8}
\end{equation*}
$$

is of order 1 or 2 or 4 . Here α is a characteristic root of A and $\alpha_{1}, \alpha_{2} \in Z[\alpha]$ form a basis for an ideal \mathfrak{U} in $Z[\alpha]$.
3. Relation (7) holds for A if and only if the form (5) represents a factor d of m (the discriminant of (5) is $4 m$). In this case $-m / d$ is also represented so that in (7) one of the S_{i} has determinant d, the other $-m / d$.
4. For an arbitrary 2×2 integral A the following fact holds: relation (7) can be satisfied if and only if the form (5) can be transformed by a unimodular similarity to a form whose middle coefficient is trace A.
5. Every integral 2×2 matrix can be factored as in (7) when a suitable integral scalar matrix is added to it.

In the case of general n and the characteristic polynomial $f(x)$ of A irreducible the problem can be studied via a result obtained previously (see [4]) by several authors.

[^1]If A and S in (1) are integral then $S=\left(\right.$ trace $\left.\lambda \alpha_{i} \alpha_{k}\right)$ where $\lambda \in Q(\alpha), \alpha$ a zero of $f(x)$ and $\alpha_{1}, \ldots, \alpha_{n}$ form a basis for the ideal \mathfrak{U} constructed as in (8). From this follows that for S to be integral it is necessary and sufficient that

$$
\begin{equation*}
\lambda \in\left(\mathfrak{U}^{2}\right)^{\prime}=\left(\mathfrak{U}^{\prime}: \mathfrak{U} \mathfrak{l}\right) \tag{9}
\end{equation*}
$$

when ' denotes the complementary ideal.
For S_{1} and S_{2} to be integral in (7) it is necessary and sufficient that also

$$
\begin{equation*}
\alpha \lambda^{-1} \in\left(\mathfrak{U}: \mathfrak{U}^{\prime}\right) \tag{10}
\end{equation*}
$$

The form in n variables of degree n mentioned at the start is connected with the norm form of an ideal (for this see Theorems 3, 4 in [3]). Some information concerning the order to which this ideal belongs can be seen from the greatest divisors of certain sets of elements in the matrix A.

One of the factors S_{i} in (7) can be chosen unimodular if and only if the ideal class corresponding to A in $Z[\alpha]$ coincides with the ideal class corresponding to A^{\prime}. If $Z[\alpha]$ is the maximal order this is only possible if this ideal class is of order 1 or 2 , (see [1], [2]).

References

1. D. K. Faddeev, On the characteristic equations of rational symmetric matrices, Dokl. Akad. Nauk SSSR 58 (1947), 753-754. (Russian) MR 9, 270.
2. O. Taussky, On matrix classes corresponding to an ideal and its inverse, Illinois J. Math. 1 (1957), 108-113. MR 20 \# 845.
3. - Ideal matrices. I, Arch. Math. 13 (1962), 275-282. MR 27 \# 168.
4. - On the similarity transformation between an integral matrix with irreducible characteristic polynomial and its transpose, Math. Ann. 166 (1966), 60-63. MR 33 \#7355.
5. - Symmetric matrices and their role in the study of general matrices, Linear Algebra and Appl. 5 (1972), 147-159.
6. - The factorization of an integral matrix into a product of two integral symmetric matrices. I, Acta Arith. (to appear).
7. -_, The factorization of an integral matrix into a product of two integral symmetric matrices. II, Comm. Pure Appl. Math. (to appear).

Department of Mathematics, California Institute of Technology, Pasadena, California 91109

[^0]: AMS (MOS) subject classifications (1970). Primary 15A36, 12A50, 10C10.
 Key words and phrases. Integral matrices.
 ${ }^{1}$ This work was carried out (in part) under an NSF contract; I have profited from discussions with E. Bender, J. Brillhart, E. C. Dade, D. Estes, H. Kisilevsky.
 ${ }^{2}$ W. Givens informs me that he also considered such a form.

[^1]: ${ }^{3}$ Since (4) defines a plane in 3-space the null-space of the binary quadratic form attached to A can be regarded as the intersection of the plane with the cone $x_{1} x_{3}-x_{2}^{2}=0$.

