THE FACTORIZATION OF AN INTEGRAL MATRIX INTO A PRODUCT OF TWO INTEGRAL SYMMETRIC MATRICES¹

BY OLGA TAUSSKY

Communicated on January 31, 1973

A theorem going back to Frobenius, but refound repeatedly (for references see [5], generalized to arbitrary fields states:

Every $n \times n$ matrix $A = (a_{ik})$ with elements in a field F is similar to its transpose A':

where S can be chosen symmetric and with elements in F. This is equivalent to the fact that every A can be expressed in the form

$$(2) A = S_1 S_2$$

when S_1 , S_2 are symmetric, with elements in F where S_1 is nonsingular.

Here a new concept is introduced. It is a form of degree n associated with the matrix.² For relation (1) implies

$$SA' = AS.$$

This leads to a set of linear equations for the elements of the symmetric matrix S. If A has all its roots different (though the general case leads to relevant results too) then the number of F-independent symmetric solutions S of (3) is n. The elements of S are then linear forms in n parameters and det S is a form of degree n in n variables. It is this form which plays an important role. If A is replaced by a matrix similar to A then S undergoes a congruence transformation and the form is multiplied by a square factor in F.

For n = 2 relation (3) leads to a single equation in 3 variables. This equation is given by

(4)
$$a_{21}x_1 + (a_{22} - a_{11})x_2 - a_{12}x_3 = 0$$

AMS (MOS) subject classifications (1970). Primary 15A36, 12A50, 10C10.

Key words and phrases. Integral matrices.

¹ This work was carried out (in part) under an NSF contract; I have profited from discussions with E. Bender, J. Brillhart, E. C. Dade, D. Estes, H. Kisilevsky.

² W. Givens informs me that he also considered such a form.

if
$$S = \begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix}$$
.³ Apart from a multiple this form is given by

(5)
$$\begin{array}{l} a(\lambda,\mu) = \\ (\alpha_1\alpha_3 - \alpha_2^2)\lambda^2 + (\alpha_1\beta_3 - 2\alpha_2\beta_2 + \alpha_3\beta_1)\lambda\mu + (\beta_1\beta_3 - \beta_2^2)\mu^2 \end{array}$$

where α_1 , α_2 , α_3 and β_1 , β_2 , β_3 are a pair of independent solutions of (4). It can be shown that the discriminant of (5) and the discriminant of the form

(6)
$$a_{21}x^2 + (a_{22} - a_{11})xy + a_{12}y^2$$

differ by a square factor. The latter discriminant is also the discriminant of the characteristic polynomial of A.

The emphasis of the present research is on the case where A in (2) is a rational integral matrix and on the question under what circumstances

(7)
$$A = S_1 S_2, \quad S_i = S'_i, \quad S_i \text{ with elements in } Z$$

For n = 2 a number of results have been obtained in [6], [7], e.g.:

1. If $gcd(a_{21}, (a_{22} - a_{11}), a_{12}) = g$ then the discriminant of (5) and of (6) coincide apart from the factor g^2 . Here the solutions $\alpha_1, \alpha_2, \alpha_3$; $\beta_1, \beta_2, \beta_3$ are assumed to be integral basis vectors for the lattice of all integral solutions of (4).

2. Let the characteristic polynomial of A be $x^2 - m$, when $m \equiv 2, 3(4)$ and square free. Then (7) can only hold if the ideal class associated with A by the relation

(8)
$$A\binom{\alpha_1}{\alpha_2} = \alpha\binom{\alpha_1}{\alpha_2}$$

is of order 1 or 2 or 4. Here α is a characteristic root of A and $\alpha_1, \alpha_2 \in Z[\alpha]$ form a basis for an ideal \mathfrak{U} in $Z[\alpha]$.

3. Relation (7) holds for A if and only if the form (5) represents a factor d of m (the discriminant of (5) is 4m). In this case -m/d is also represented so that in (7) one of the S_i has determinant d, the other -m/d.

4. For an arbitrary 2×2 integral A the following fact holds: relation (7) can be satisfied if and only if the form (5) can be transformed by a unimodular similarity to a form whose middle coefficient is trace A.

5. Every integral 2 \times 2 matrix can be factored as in (7) when a suitable integral scalar matrix is added to it.

In the case of general n and the characteristic polynomial f(x) of A irreducible the problem can be studied via a result obtained previously (see [4]) by several authors.

³ Since (4) defines a plane in 3-space the null-space of the binary quadratic form attached to A can be regarded as the intersection of the plane with the cone $x_1x_3 - x_2^2 = 0$.

If A and S in (1) are integral then $S = (\text{trace } \lambda \alpha_i \alpha_k)$ where $\lambda \in Q(\alpha)$, α a zero of f(x) and $\alpha_1, \ldots, \alpha_n$ form a basis for the ideal \mathfrak{U} constructed as in (8). From this follows that for S to be integral it is necessary and sufficient that

(9)
$$\lambda \in (\mathfrak{U}^2)' = (\mathfrak{U}' : \mathfrak{U}),$$

when ' denotes the complementary ideal.

For S_1 and S_2 to be integral in (7) it is necessary and sufficient that also

(10)
$$\alpha \lambda^{-1} \in (\mathfrak{U} : \mathfrak{U}').$$

The form in *n* variables of degree *n* mentioned at the start is connected with the norm form of an ideal (for this see Theorems 3, 4 in [3]). Some information concerning the order to which this ideal belongs can be seen from the greatest divisors of certain sets of elements in the matrix A.

One of the factors S_i in (7) can be chosen unimodular if and only if the ideal class corresponding to A in $Z[\alpha]$ coincides with the ideal class corresponding to A'. If $Z[\alpha]$ is the maximal order this is only possible if this ideal class is of order 1 or 2, (see [1], [2]).

References

1. D. K. Faddeev, On the characteristic equations of rational symmetric matrices, Dokl. Akad. Nauk SSSR 58 (1947), 753-754. (Russian) MR 9, 270.

2. O. Taussky, On matrix classes corresponding to an ideal and its inverse, Illinois J. Math. 1 (1957), 108–113. MR 20 #845.

3. ——, Ideal matrices. I, Arch. Math. 13 (1962), 275–282. MR 27 #168.

4. ———, On the similarity transformation between an integral matrix with irreducible characteristic polynomial and its transpose, Math. Ann. **166** (1966), 60–63. MR **33** #7355.

5. _____, Symmetric matrices and their role in the study of general matrices, Linear Algebra and Appl. 5 (1972), 147–159.

6. ———, The factorization of an integral matrix into a product of two integral symmetric matrices. I, Acta Arith. (to appear).

7. ____, The factorization of an integral matrix into a product of two integral symmetric matrices. II, Comm. Pure Appl. Math. (to appear).

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91109

958