ESTIMATES FOR WEAK-TYPE OPERATORS

BY COLIN BENNETT

Communicated by E. M. Stein, February 16, 1973

1. **Introduction.** When f is an integrable function on the interval [0, 1], we denote by f^* its nonincreasing rearrangement and by f^{**} the average $f^{**}(t) = (1/t) \int_0^t f^*(s) ds$. The Lorentz space L^{pq} , $1 \le p \le \infty$, $1 \le q \le \infty$ consists of all functions f for which the norm

$$||f|| = \left\{ \int_0^1 \left[t^{1/p} f^{**}(t) \right]^q \frac{dt}{t} \right\}^{1/q}$$

is finite; the Lorentz space L^{pq} is defined in the same way except that f^{**} is replaced by f^* . When $1 , <math>L^{pq}$ and $L^{(pq)}$ coincide, up to equivalence of (quasi) norms (cf. [3], [4]). The spaces L^{pq} , $1 , are the intermediate spaces <math>(L^1, L^{\infty})_{\theta,q;K}$, $\theta = 1 - 1/p$, generated by the K-method of J. Peetre (cf. [2], [5], [7]). Note that $L^{(1\infty)}$ is the space usually referred to as "weak- L^1 " and that the Orlicz space $L \log^+ L$ of functions f for which $|f| \log^+ |f|$ is integrable, is (cf. [1]) none other than the Lorentz space L^{11} . Thus

$$L \log^+ L = L^{11} \subseteq L^{1\infty} = L^1 = L^{(11)} \subseteq L^{(1\infty)} = \text{weak-}L^1.$$

From characterizations of the intermediate spaces $(L \log^+ L, L^1)_{\theta,q;K}$ and $(L^1, \operatorname{weak-}L^1)_{\theta,q;K}$ obtained by the author in [1] and subsequently, there follow some new estimates for weak-type operators. In particular, we obtain a sharper form of a theorem of O'Neil [6] concerning operators that are simultaneously of weak-types (1, 1) and (p, p), 1 .

2. Intermediate spaces between $L \log^+ L$ and L^1 . The space of functions f for which the norm

$$||f|| = \left\{ \int_0^1 \left[t \left(\log \frac{1}{t} \right)^{\theta - 1/q} f^{**}(t) \right]^q \frac{dt}{t} \right\}^{1/q}$$

is finite, will be denoted by $A^{\theta q}$, $0 < \theta < 1$, $1 \le q \le \infty$. The corresponding space with f^{**} replaced by f^{*} in the previous definition, is denoted by $A^{(\theta q)}$. The following results were obtained by the author in $\lceil 1 \rceil$:

Theorem 1.
$$(L^1, L \log^+ L)_{\theta,q;K} = A^{\theta q}, 0 < \theta < 1, 1 \le q \le \infty$$
.

COROLLARY 1.1.
$$(L^1, L \log^+ L)_{\theta, 1:K} = L(\log^+ L)^{\theta}, 0 < \theta < 1.$$

AMS (MOS) subject classifications (1970). Primary 46E30, 46E35.

Corollary 1.2. $(L^1, L \log^+ L)_{1/q,q;K} = L^{1q}, 1 < q < \infty$.

Also characterized in [1] are the spaces $(L \log^+ L, L^{\infty})_{\theta,q;K}$. We have no need here of any explicit characterization but let us note the following result.

Theorem 2.
$$(L \log^+ L, L^{\infty})_{\theta,q;K} \subseteq L^{pq}, \theta = 1 - 1/p$$
.

The proofs of all these results depend crucially on the fact that the Orlicz space $L \log^+ L$ is also a Lorentz Λ -space (cf. [1]). In the next section when we consider the space weak- L^1 , the situation is radically different and the same techniques do not apply.

3. Intermediate spaces between L^1 and weak- L^1 . For a measurable function f on [0, 1], f^* denotes the nonincreasing rearrangement on $(0, \infty)$ of the function $tf^*(t)$, taken with respect to the measure $dm^*(t) = dt/t$. Thus f^* is the right-continuous inverse of the distribution function $\sigma \to m^*\{t:tf^*(t)>\sigma\}$. The next theorem shows that the intermediate spaces between L^1 and weak- L^1 are simply the "Lorentz spaces with respect to f^* ".

THEOREM 3. A necessary and sufficient condition that f belong to $(L^1, weak-L^1)_{\theta,a:K}$, $0 < \theta < 1$, $1 \le q \le \infty$, is that the quasinorm

$$||f|| = \left\{ \int_0^\infty \left[t^{1-\theta} f^{\#}(t) \right]^q \frac{dt}{t} \right\}^{1/q}$$

be finite.

It is not difficult to check that the quasinorm in the statement of Theorem 3 dominates the quasinorm of the space $A^{(1-\theta,q)}$. Thus

COROLLARY 3.1.
$$(L^1, weak-L^1)_{\theta,q;K} \subseteq A^{(1-\theta,q)}$$
.

The Peetre K-functional norm $K(t; f) = K(t; f; \text{weak-}L^1, L^{\infty})$ (cf. [2], [5], [8]) for the pair (weak- L^1, L^{∞}) is given by $K(t; f) = \sup_{0 < s < t} sf^*(s)$. Since $f^*(t) \le t^{-1}K(t; f) \le f^{**}(t)$, it follows that

$$L^{pq} \subseteq (\text{weak-}L^1, L^{\infty})_{\theta,q;K} \subseteq L^{(pq)},$$

 $\theta = 1 - 1/p$. Hence

Theorem 4. $(weak-L^1, L^{\infty})_{\theta,q;K} = L^{pq}, \ \theta = 1 - 1/p, \ 1$

4. The interpolation theorems. We are now in a position to exhibit the interpolation theorems corresponding to the various classes of intermediate spaces described in §§2 and 3. Our main result is:

THEOREM 5. Let T be a quasilinear (cf. [5]) operator, T:L $\log^+ L \to L^1$ and T:L¹ \to weak-L¹. Then T: $A^{\theta q} \to A^{(\theta q)}$, $0 < \theta < 1$, $1 \le q \le \infty$.

The cases $\theta = 1/q$ and q = 1 yield the following corollaries:

COROLLARY 5.1. Under the hypotheses of Theorem 5, T is a bounded operator from the Lorentz space L^{1q} into the Lorentz space $L^{(1q)}$, $1 \le q \le \infty$.

COROLLARY 5.2. Under the hypotheses of Theorem 5, T is a bounded operator from the Orlicz space $L(\log^+ L)^{\theta}$ into the space $A^{(\theta 1)}$, $0 < \theta < 1$.

Any operator T of weak-types (1, 1) and (p, p), p > 1, will satisfy the hypotheses of Theorem 5 (cf. [6]) and hence the conclusions above; in particular, any such operator maps $L(\log^+ L)^{\theta}$ into $A^{(\theta 1)}$. Since $A^{(\theta 1)} \subseteq L^{(1,1/\theta)} = L^{(1,1/\theta)}$, Corollary 5.2 is sharper than the following result of O'Neil [6]:

COROLLARY 5.3 (O'NEIL). If T is of weak-types (1, 1) and (p, p), p > 1, then $T: L(\log^+ L)^\theta \to L^{(1,1/\theta)}$.

Finally, let us note that if we combine Theorem 4 and the fact that the L^{pq} spaces are the intermediate spaces between L^1 and L^{∞} , we can reproduce the following special case of the Marcinkiewicz-Calderón-Hunt theorem (cf. [3], [4], [5], [8]).

THEOREM 6 (MARCINKIEWICZ-CALDERÓN-HUNT). If T is of weak-types (1, 1) and (∞, ∞) , then $T: L^{pq} \to L^{pq}$, $1 , <math>1 \le q \le \infty$.

REFERENCES

- 1. C. Bennett, Intermediate spaces and the class $L \log^+ L$, Ark. Mat. (to appear).
- 2. P. L. Butzer and H. Berens, Semi-groups of operators and approximation, Die Grundlehren der math. Wissenschaften, Band 145, Springer-Verlag, New York, 1967. MR 37 #5588.
- 3. A. P. Calderón, Spaces between L^1 and L^{∞} and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273–299. MR 34 # 3295.
- **4.** R. A. Hunt, On L(p, q) spaces, Enseignement Math. (2) **12** (1966), 249–276. MR **36** #6921.
- 5. P. Krée, Interpolation d'espaces vectoriels qui ne sont ni normés, ni complets. Applications, Ann. Inst. Fourier (Grenoble) 17 (1967), fasc. 2, 137-174. MR 37 #4605.
- 6. R. O'Neil, Les fonctions conjuguées et les intégrales fractionnaires de la classe $L(\log^+ L)^s$, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A463-A466. MR 35 #717.
- 7. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971.
- 8. A. Zygmund, *Trigonometric series*, Vols. I, II, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498.

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91109