POSITIVE HARMONIC FUNCTIONS AND BIHARMONIC DEGENERACY ${ }^{1}$

BY LEO SARIO AND CECILIA WANG

Communicated by S. S. Chern, August 9, 1972

The class $O_{H P}$ of Riemann surfaces or Riemannian manifolds which do not carry (nonconstant) positive harmonic functions is the smallest harmonically or analytically degenerate class. In particular, it is strictly contained in the classes $O_{H B}$ and $O_{H D}$ of Riemann surfaces or Riemannian manifolds without bounded or Dirichlet finite harmonic functions, and in the classes $O_{A B}$ and $O_{A D}$ of Riemann surfaces without bounded or Dirichlet finite analytic functions.

In the present paper we ask: Are there any relations between $O_{H P}$ and the classes $O_{H^{2} B}$ and $O_{H^{2} D}$ of Riemannian manifolds without bounded or Dirichlet finite nonharmonic biharmonic functions? We shall show that the answer is in the negative. Explicitly, if O^{N} is a null class of N-dimensional manifolds, and \widetilde{O}^{N} its complement, then all four classes

$$
O_{H P}^{N} \cap O_{H^{2} X}^{N}, \quad O_{H P}^{N} \cap \widetilde{O}_{H^{2} X}^{N}, \quad \widetilde{O}_{H P}^{N} \cap O_{H^{2} X}^{N}, \quad \widetilde{O}_{H P}^{N} \cap \widetilde{O}_{H^{2} X}^{N}
$$

are nonempty for both $X=B$ and D, and for any N. This independence of N is of interest, as biharmonic degeneracy often fails to have this property. Typically, whereas the punctured Euclidean N-space is not an element of $O_{H^{2} B}^{N}$ for $N=2,3$, it does belong to it for all $N \geqq 4$ (SarioWang [6]).

Methodologically, we introduce in $\S 1$ a simple type of Riemannian manifold which, on account of its rectangular coordinates and nonconformal metric, is very versatile in classification problems.

1. We shall show

Theorem 1. $O_{H P}^{N} \cap \widetilde{O}_{H^{2} B}^{N} \neq \varnothing$ for every N.

Proof. Consider the N-manifold, $N \geqq 2$,

$$
T=\left\{0<x<\infty, 0 \leqq y \leqq 2 \pi, 0 \leqq z_{i} \leqq 2 \pi\right\},
$$

$i=1, \ldots, N-2$, with $y=0, y=2 \pi$ identified, and $z_{i}=0, z_{i}=2 \pi$ also identified for every i. Endow T with the metric

[^0]$$
d s^{2}=d x^{2}+x^{2} d y^{2}+\sum_{i=1}^{N-2} d z_{i}^{2}
$$

To see that $T \in O_{H P}$ note that $h(x) \in H(T)$ if $\Delta h=-x^{-1} d\left(x h^{\prime}\right) / d x=0$, that is, $h=a \log x+b$ with constants a, b. Since $|h| \rightarrow \infty$ as $x \rightarrow 0$ or ∞, the harmonic measure of the ideal boundary of T vanishes, and T belongs to the class O_{G} of parabolic manifolds. In view of $O_{G} \subset O_{H P}$ (see e.g. Sario-Nakai [4]), we have $T \in O_{H P}$.

An $H^{2} B$-function on T is $u=\sin 2 y$. In fact,

$$
\Delta u=-x^{-1} \partial\left(x^{-1} \cdot 2 \cos 2 y\right) / \partial y=4 x^{-2} \sin 2 y
$$

and

$$
\Delta^{2} u=-4 x^{-1}\left\{\frac{\partial}{\partial x}\left[x \cdot\left(-2 x^{-3}\right) \sin 2 y\right]+\frac{\partial}{\partial y}\left[x^{-1} \cdot x^{-2} \cdot 2 \cos 2 y\right]\right\}=0
$$

2. Next we prove

Theorem 2. $O_{H P}^{N} \cap O_{H^{2} B}^{N} \neq \varnothing$ for every N.
Proof. Equip the punctured N-space with the metric $d s=r^{-1}|d x|$ so as to obtain a manifold $M=\{0<r<\infty\}$ with

$$
d s^{2}=r^{-2} d r^{2}+\sum_{i=1}^{N-1} \varphi_{i}\left(\theta_{1}, \ldots, \theta_{N-1}\right) d \theta_{i}^{2}
$$

where the φ_{i} are trigonometric functions of $\left(\theta_{1}, \ldots, \theta_{N-1}\right)$. We have $h(r) \in H(M)$ if $\Delta h=-r^{2}\left(h^{\prime \prime}+r^{-1} h^{\prime}\right)=0$, which gives $h=a \log r+b$. Thus again $M \in O_{H P}$.

To show that $M \in O_{H^{2} B}$, let $S_{n m}$ be the spherical harmonics, $n=1$, $2, \ldots ; m=1, \ldots, m_{n}$. For a constant p, a straightforward computation of Δ gives $r^{p} S_{n m} \in H(M)$ if

$$
p=\left\{\begin{array}{l}
p_{n}=\sqrt{n(n+N-2)} \\
q_{n}=-\sqrt{n(n+N-2)}
\end{array}\right.
$$

Set $h_{n m}=r^{p_{n}} S_{n m}, k_{n m}=r^{q_{n}} S_{n m}$. The eigenfunction expansion of any $h \in H(M)$ for a fixed r and $\sigma=\log r$ yields

$$
h=\sum_{n=1}^{\infty} \sum_{m=1}^{m_{n}}\left(a_{n m} h_{n m}+b_{n m} k_{n m}\right) S_{n m}+a \sigma+b
$$

on all of M, with uniform convergence on compact subsets. Again by direct computation, the equations $\Delta u_{n m}=h_{n m}, \Delta v_{n m}=k_{n m}, \Delta \tau=\sigma$, $\Delta s=1$ are seen to be satisfied by the functions

$$
\begin{aligned}
u_{n m} & =-\frac{1}{2 p_{n}} r^{p_{n}} \log r \cdot S_{n m}, & v_{n m} & =-\frac{1}{2 q_{n}} r^{q_{n}} \log r \cdot S_{n m}, \\
\tau & =-\frac{1}{6}(\log r)^{3}, & s & =-\frac{1}{2}(\log r)^{2} .
\end{aligned}
$$

Every $u \in H^{2}(M)$ has an expansion

$$
\begin{aligned}
u= & \sum_{n=1}^{\infty} \sum_{m=1}^{m_{n}}\left(a_{n m} u_{n m}+b_{n m} v_{n m}\right)+a \tau+b s \\
& +\sum_{n=1}^{\infty} \sum_{m=1}^{m_{n}}\left(c_{n m} h_{n m}+d_{n m} k_{n m}\right)+c \sigma+d
\end{aligned}
$$

on M, with compact convergence implied by that of the expansion of h.
For fixed (n, m),

$$
\int_{S} u \cdot S_{n m} d \omega=A r^{p_{n}} \log r+B r^{q_{n}} \log r+C r^{p_{n}}+D r^{q_{n}}
$$

where $d \omega$ is the area element on the unit ($N-1$)-sphere S. If $u \in H^{2} B(M)$, the integral on the left is bounded in r, and the same is true, by linear independence, of each term on the right. We conclude that $a_{n m}=b_{n m}$ $=c_{n m}=d_{n m}=0$. The remaining terms in the expansion of u are all radial, and by their linear independence and the boundedness of u we obtain $a=b=c=0$. Thus u is constant and $M \in O_{H^{2} B}$.
3. We proceed to show

Theorem 3. $\widetilde{O}_{H P}^{N} \cap O_{H^{2} B}^{N} \neq \varnothing$ for every N.
Proof. First suppose $N>2$. Consider the punctured N-space R with the metric $d s=r^{1 / 3}|d x|, r=|x|$. The function $\sigma(r)=r^{-4(N-2) / 3}$ is positive and harmonic, hence $R \in \widetilde{O}_{H P}$. We now let

$$
\begin{aligned}
h_{n m} & =r^{p_{n}} S_{n m}, \quad k_{n m}=r^{q_{n}} S_{n m}, \\
p_{n}, q_{n} & =\frac{1}{2}\left[-\frac{4}{3}(N-2) \pm \sqrt{\frac{16}{9}(N-2)^{2}+4 n(n+N-2)}\right], \\
u_{n m} & =A r^{p_{n}+8 / 3} S_{n m}, \\
\tau & = \begin{cases}C \log r & \text { for } N=4, \\
C r^{-4(N-4) / 3}+8 / 3 & \text { for } N \neq 4,\end{cases}
\end{aligned}
$$

and

$$
s=D r^{8 / 3}
$$

With this notation, the constants suitably chosen, the reasoning in §2
applies, and we have $R \in O_{H^{2} B}$.
For $N=2$, it is known that the disk $|x|<1$ can be given a conformal metric that excludes $H^{2} B$-functions (Nakai-Sario [3]), while harmonicity and hence the existence of $H P$-functions is not affected.
4. The Euclidean N-ball is trivially in $\widetilde{O}_{H P}^{N} \cap \widetilde{O}_{H^{2} B}^{N}$ by virtue of $h=r$ $+1 \in H P$ and $r^{2} \in H^{2} B$. We may therefore summarize our results thus far as follows:

Theorem 4. The totality of Riemannian N-manifolds decomposes, for every N, into the disjoint nonempty classes

$$
O_{H P}^{N} \cap O_{H^{2} B}^{N}, \quad O_{H P}^{N} \cap \tilde{O}_{H^{2} B}^{N}, \quad \tilde{O}_{H P}^{N} \cap O_{H^{2} B}^{N}, \quad \tilde{O}_{H P}^{N} \cap \tilde{O}_{H^{2} B}^{N}
$$

5. We turn to the relationship of $O_{H P}$ to $O_{H^{2} D}$.

Theorem 5. $O_{H P}^{N} \cap O_{H^{2} D}^{N} \neq \varnothing$ for every N.
Proof. We recall that the manifold M of $\S 2$ is in $O_{H P}$. To see that it also is in $O_{H^{2} D}$ we use again the expansion in $\S 2$ of $u \in H^{2}$, which we write as

$$
u=\sum_{n=0}^{\infty} \sum_{m=1}^{m_{n}} w_{n m} .
$$

Here for $n=0$,

$$
w_{01}=a \tau+b s+c \sigma+d=f_{01}
$$

and for $n>0$,

$$
w_{n m}=a_{n m} u_{n m}+b_{n m} v_{n m}+c_{n m} h_{n m}+d_{n m} k_{n m}=f_{n m} S_{n m},
$$

with

$$
f_{n m}=A r^{p_{n}} \log r+B r^{q_{n}} \log r+C r^{p_{n}}+D r^{q_{n}}
$$

Choose a fixed (n, m). Then for any $(k, l) \neq(n, m)$ and a fixed $r_{0}>0$, $\Omega=\left\{x \in M \mid 0<r(x)<r_{0}\right\}$, the mixed Dirichlet integral over Ω is

$$
0=D_{\Omega}\left(h_{n m}, h_{k l}\right)=\operatorname{const} \int_{S} \operatorname{grad} S_{n m} \cdot \operatorname{grad} S_{k l} d \omega
$$

A fortiori,

$$
\begin{aligned}
& D_{\Omega}\left(w_{n m}, w_{k l}\right) \\
& \quad=\int_{\Omega}\left(\operatorname{grad} f_{n m} \cdot \operatorname{grad} f_{k l}\right) S_{n m} S_{k l} d V+\int_{\Omega} f_{n m} f_{k l} \operatorname{grad} S_{n m} \cdot \operatorname{grad} S_{k l} d V \\
& \quad=0
\end{aligned}
$$

and therefore

$$
D(u) \geqq D\left(w_{n m}\right)=\text { const } \int_{0}^{\infty} f_{n m} d r=\infty
$$

unless all coefficients (except perhaps d) in the expansion of u vanish.
6. We claim

Theorem 6. The totality of Riemannian N-manifolds decomposes, for every N, into the disjoint nonempty classes

$$
O_{H P}^{N} \cap O_{H^{2} D}^{N}, \quad O_{H P}^{N} \cap \widetilde{O}_{H^{2} D}^{N}, \quad \widetilde{O}_{H P}^{N} \cap O_{H^{2} D}^{N}, \quad \widetilde{O}_{H P}^{N} \cap \widetilde{O}_{H^{2} D}^{N}
$$

Proof. For $N>2$, the reasoning in $\S 5$, with the notation of $\S 3$, gives $R \in O_{H^{2} D}$, hence $\widetilde{O}_{H P}^{N} \cap O_{H^{2} D}^{N} \neq \varnothing$. For $N=2$ this is known (NakaiSario [2]).

To see that $O_{H P}^{N} \cap \widetilde{O}_{H^{2} D}^{N} \neq \varnothing$, consider the N-ball

$$
B_{\alpha}^{N}=\{|x|<1, d s\}, \quad d s=\left(1-|x|^{2}\right)^{\alpha}|d x| .
$$

It was proved in Hada-Sario-Wang [1] that

$$
B_{\alpha}^{N} \in O_{G}^{N} \Leftrightarrow \alpha \geqq 1 /(N-2) \quad \text { for } N>2
$$

and

$$
B_{\alpha}^{N} \in O_{H^{2} D}^{N} \Leftrightarrow \begin{cases}\alpha \leqq-\frac{3}{N+2} & \text { for } 2<N \leqq 6 \\ \alpha \notin\left(-\frac{3}{N+2}, \frac{5}{N-6}\right) & \text { for } N>6\end{cases}
$$

In particular,

$$
B_{1}^{N} \in O_{H P}^{N} \cap \widetilde{O}_{H^{2} D}^{N} \quad \text { for } 2<N \leqq 6
$$

and

$$
B_{1 /(N-6)}^{N} \in O_{H P}^{N} \cap \widetilde{O}_{H^{2} D}^{N} \quad \text { for } N>6
$$

For $N=2$, the plane can be endowed with a metric which allows $H^{2} D$ functions (Nakai-Sario [2] and Sario-Wang [5]), and we have $O_{H P}^{2}$ $\cap \widetilde{O}_{H^{2} D}^{2} \neq \varnothing$.

The relation $\widetilde{O}_{H P}^{N} \cap \widetilde{O}_{H^{2} D}^{N} \neq \varnothing$ is again trivial for every N in view of the Euclidean N-ball.

References

1. D. Hada, L. Sario and C. Wang, Dirichlet finite biharmonic functions on the Poincaré N -ball, J. Reine Agnew. Math. (to appear).
2. M. Nakai and L. Sario, Existence of Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn. Ser. A (to appear).
3.
4. L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der Math. Wissenschaften, Band 164, Springer-Verlag, Berlin and New York, 1970. MR 41 \#8660.
5. L. Sario and C. Wang, Counterexamples in the biharmonic classification of Riemannian 2-manifolds (to appear).
6. - Generators of the space of bounded biharmonic functions, Math. Z. 127 (1972), 273-280.

Department of Mathematics, University of California, Los Angeles, California 90024

[^0]: AMS (MOS) subject classifications (1970). Primary 31B30.
 ${ }^{1}$ This work was sponsored by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-G181, University of California, Los Angeles.

