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1. Introduction. Let x:S2 -> S2m(l) be a minimal immersion of the 2-
sphere into the unit sphere of dimension 2m. Following S. S. Chern [4] 
we associate to x a certain holomorphic curve from S2 with values in 
CP2m (the complex projective space of dimension 2m) called the directrix 
curve of the minimal immersion. (Note that in the induced metric, S2 

acquires a conformai structure.) This curve is rational, and the unique 
condition it must satisfy is that of being totally isotropic, i.e. if £ is any of 
its local representations in homogeneous coordinates, then Ç satisfies 

where (, ) denotes the symmetric product in c2m+1. 
Chern proved, for the case m = 2, that the simple condition of total 

isotropy completely characterizes the set of directrix curves among all 
holomorphic ones from S2 into CP2m if, instead of minimal immersions, 
we consider generalized minimal immersions. In the paper for which this 
is an announcement, we generalize this result and obtain further geometri­
cal information about the corresponding minimal immersion. Complete 
proofs will appear elsewhere. 

The first systematic study of this subject was made by E. Calabi who 
also associated, implicitly in (2) and explicitly in (3), a holomorphic curve 
rj to the minimal immersion x. It turns out that rj is the (m — l)th asso­
ciated curve of the directrix curve. This observation has allowed us to 
unify the approaches developed previously by Calabi and Chern. 

2. Definitions and preliminary remarks. Let x:S2 -> S2m be a differen-
tiable map into the unit 2m-sphere and let z be a local isothermal parameter 
in S2 relative to the induced metric. Set d = d/dz and <5 == ô/ôz. Then we 
denote by 

ds2 = 2F\dz\2, F = (ôx, dx\ the metric of S2, 
co = iFdz A dz, the area form, and by 
K = — dd log(F)/F, the Gauss curvature. 

The minimality of x is then equivalent to the equation 

ddx = — Fx. 
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We will allow F to have isolated zeros, whereby the immersion is called 
generalized. We consider at each point of S2 the complex subspace V{x) 
of C2m+1 spanned by {3x, d2x, d3x,...}. One can prove that V(x) is totally 
isotropic and perpendicular to x. Furthermore, if we assume that x does 
not lie in any lower dimensional subspace of JR2m+1, then V(x) can be 
represented locally, in Plücker coordinates, by dx A d2x A • • • A dmx 
except for a finite number of points where this product is zero. 

3. The directrix curve. Define G0, Gu G 2 , . . . by the following recur­
rence formulae : 

G0 = x, 

Gk = dkx~ X a{Gj9 fc = 1,2,3,..., 

where the a{ are chosen in such a way that each Gk is perpendicular to all 
the previous ones. Then one can prove 

LEMMA 1. 

dGk = Gk + 1 + (3log|GJ2)Gk, 

<5Gk= HGJ2Gt-i/IG*-il2> fork e l -

Certainly Gm+k = 0 and so this lemma gives 

5Gm = (3log|GJ2)Gm. 

Since Gm ^ 0, we may then use Gm as a local definition for a holomorphic 
curve from S2 into CP2m that we call the directrix curve of x. This curve 
is totally isotropic and does not lie in any complex hyperplane of CP2m. 
If £ denotes the directrix curve, we shall denote by £l9 £2, £3,. • • its associ­
ated curves. For definitions see [6, p. 71]. 

It is quite natural to ask if we can reverse the process described above 
and, starting from an arbitrary totally isotropic holomorphic curve 
£ : S2 -» CP2m that is not contained in any complex hyperplane of CP2m, 
somehow construct a minimal immersion x:S2 -+ S2m that has £ as its 
directrix curve. This is indeed possible. The way of doing this is by con­
sidering, locally, a vector defined by 

Xj, = £ A Ç A ••• A £M~X A I A l' A ••• A ^m~1 

and then observing that \j/ is either real or total imaginary. Set \j/ equal to 
ij/iîil/is real, or — i\j/ if 1/̂  is totally imaginary. Then we prove the following 
proposition: 

PROPOSITION 1. $/|$| is independent of the particular local coordinates 
used, and so it defines a map x from S2 into S2m. Furthermore we have, 
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relative to a local coordinate z on S2, that (dx, dx) = 0 and ddx is parallel 
to x. 

An immediate consequence of Proposition 1 is that the map x = $/|$| 
is minimal. It is also possible to prove the following proposition which 
gives a criterion for the regularity of x. 

PROPOSITION 2. The map x, obtained by the above construction satisfies, 
in terms of the local coordinate z, the relation 

(dx,dx) = \Zm-l * C-l\2Mm-l\*. 

This implies that x and £m-i are isometric and consequently x will be 
regular except for a finite number of points. Thus, x will be a generalized 
minimal immersion. 

PROPOSITION 3. Suppose £, £:S2-» CP2m are totally isotropic curves 
which do not lie in a complex hyper plane ofCP2m and which give rise to the 
same minimal immersion x:S2 -> S2m by the process described above. Then 

Now Propositions 1, 2 and 3 can be put together to give a proof of the 
following theorem. 

THEOREM 1. There exists a canonical 1-1 correspondence between the set 
of generalized minimal immersions x:S2 -• S2m which are not contained in 
any lower dimensional subspace of R2m+1 and the set of totally isotropic 
holomorphic curves £ : S2 -• CP2m which are not contained in any complex 
hyperplane of CP2m. The correspondence is the one that associates to each 
minimal immersion x its directrix curve. 

The principal importance of this theorem is that it allows us to identify 
these two spaces; and the space of totally isotropic holomorphic curves is 
much easier to study. 

4. The area of a minimal immersion x:S2 -> S2m. Let us look a bit more 
carefully at what Proposition 2 says. From the fact that x and ^m-l are 
isometric, we conclude that: 

Area(x) = 27udegree(<i;w_1). 

This was already known to Calabi [2]. Since £w_ i is not a general curve 
in CPN~X

9 N = (2"^+1), but a totally isotropic one, we may ask ourselves 
what values degree (£w_ x) can assume. In fact, if we represent by Jtt?m the 
manifold whose points are m-dimensional totally isotropic subspaces of 
C2 m + 1 , we may think of ^m_! as a function with values in this space. It 
turns out that Jt?m is a Kâhler submanifold of the corresponding projec­
tive space and also a homogeneous space given by SO(2m + l)/U(m). 
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The following lemmas give some information about how Jfw lies in the 
projective space. 

LEMMA 2. H2(J^m9Z), the second homology group of 34fm with integer 
coefficients, is isomorphic to Z. 

LEMMA 3. We have, in a canonical way, J^t c J^2
 c ^ 3 <=•"'<=• Mm> 

The space Jft is a generator for H2(Jfm, Z) and the degree ofM?
1, as a sub-

manifold ofCPN~l, is 2. 

Lemma 2 allows us to define a notion of degree for curves in J^m and 
by Lemma 3 we know that such a degree is half of the degree of the curve 
considered now in the projective space. 

THEOREM 2. The area of a generalized minimal immersion x : S2 -> S2m 

must be a multiple of An. 

It is known that for x not totally geodesic, we have 

Area(x) ^ 2nm(m + 1) 

and we are able to exhibit examples for all allowed multiples of 4n. This 
makes this theorem the best possible. 

5. A rigidity theorem. Certainly if we know one example of a totally 
isotropic holomorphic curve, we are able to construct immediately a whole 
family of them by considering its orbit under the action of the group 
SO {2m + 1, C). We certainly would like to know how many of them are 
really different, that is, we would like to identify minimal immersions up 
to rigid motions of S2m or even up to isometry. The latter sounds more 
interesting and one is naturally led to consider what relation there is 
between the directrix curves of two isometric minimal immersions 
x,y:S2->S2m. 

PROPOSITION 4. Let x,y:S2 -» S2m be generalized minimal immersions 
which do not lie in any lower dimensional subspace ofR2m+ l, and let l;, Ç:S2 

-> CP2m be the corresponding directrix curves. Then, x, y are isometric if 
and only ifÇ,Ç are. 

The proof of this follows from the fact that x and < m̂_x are isometric 
and from the following lemma which allows us to conclude that the metric 
of Ç is completely determined by the metric of x. 

LEMMA 4. Let x : S2 -• S2m be a generalized minimal immersion which 
does not lie in any lower dimensional subspace of R2m+1. Define 
Fk = \dx A d2x A ••• A dkx\2. Let Ç:S2 -» CP2m be the directrix curve 
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ofx and let Qk be the curvature form ofÇk. Then, if we define F0 = 1, we have 

Fk+1=-p^(ddlog(Fk) + F), 

Qk = ^ ( S S l o g t f ^ - J + F)dz A dz. 

Now, by Calabi [1] there exists a unique unitary transformation U 
of C 2 m + 1 such that Ç = UÇ. Since (7 takes a totally isotropic curve into 
another one, 17 must be very special. In fact we have 

LEMMA 5. Let £, Ç:C -> C 2 m + 1 be totally isotropic polynomials not 
lying in any lower dimensional complex subspace ofC2m+1. If there exists 
a linear transformation U of C 2 m + 1 such that [ƒ£ = £, then Ue 
SO(2m+ 1,C). 

From this we may conclude the following: 

THEOREM 3. Suppose x,y:S2-> S2m are minimal immersions which do not 
lie in any lower dimensional subspace ofR2m+1. Then x and y are isometric 
if and only if they differ by a rigid motion ofS2m. 
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