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1. Let M and B be Riemannian manifolds with M connected and com­
plete. Assume n and ft are Riemannian submersions from M onto B so 
that the fibers of these two submersions are totally geodesic, n and ft are 
said to be equivalent provided there exists an isometry f of M which in­
duces an isometryƒ of B so that the following diagram is commutative. 

ƒ 

We call the pair (ƒ, ƒ) a bundle isometry of n and ft. Now set n = n. 
n is homogeneous if for every p,qe M there exists a bundle isometry 
(ƒ, ƒ ) Of 7C With ƒ(?) = «. 

In what follows Sm denotes the unit m sphere while Sq(r) denotes a q 
sphere of radius r. K^(PXY) denotes the curvature of a 2 plane in B 
spanned by X and Y 

For a Riemannian submersion n:M -* B, O'Neill [10] has defined a 
tensor A which we call the integrability tensor of n. If A = 0, then the 
horizontal distribution (the distribution complementary to the fibers 
in the tangent space of M) is integrable. In general we will follow the nota­
tion of [10]. We now state our first result. Complete proofs are found in [4]. 

THEOREM 1.1. Let TC.S™ -+B be a Riemannian submersion with totally 
geodesic fibers. Assume 1 ^ dim fiber ^ m — 1. Then as a fiber bundle n is 
one of the following types: 

(a) S 1 ^S 2 M + 1 (b) S3^S4n+3 

(c) S1 

In cases (a) and (b) B is isometric to complex projective n-space and quater-
ionic n-space respectively with 1 ^ K^(PX Y) S 4. In cases (c\ (d) and (e) 
B is isometric to a sphere of curvature 4. 
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Any two submersions both of type (a), (fc), or (c) are equivalent and any 
submersion in one of these three cases is homogeneous. 

PROPOSITION 1.2. Let n:M ->B be a Riemannian submersion with totally 
geodesic fibers. If M is ô pinched, B is ö/4 pinched. 

PROOF OF 1.2. We let X and Y be any orthonormal horizontal vectors. 
If Ax Y # 0 we show ||>4XY|| fg 1 using the relations of O'Neill and ex­
ploiting the skew-symmetry of Ax. Dropping the assumption AXY # 0 
and appealing to Corollary 1 of O'Neill [10] we show ö g K^(PXY) 
= 1 + 31| AXY||2 g 4. If M = Sm then our result implies B is 1/4 pinched. 

PROOF OF 1.1. n is a fiber bundle and B is complete by the result of 
Hermann [6]. Now the only complete totally geodesic subspaces of 
spheres are spheres. By a result of Adem [2] it follows m and the fiber 
dimension are odd. A fiber homotopy sequence shows B is simply con­
nected by our proposition B is 1/4 pinched. Hence Berger's theorem 
([3], [7]) implies B is isometric to one of the projective spaces or is homeo-
morphic to a sphere. Adem's result combined with standard fiber homo­
topy sequence arguments yield that if B is Cp(n) or Qp(n) with n ^ 2 then 
the only submersions are of types (a) or (b). If B is Cl(P\ the Cayley two 
plane, then by Adem's result m = 31 and dim fiber = 15. Thus 7it(S

31) 
- 7r,.(C2(P)) -* itt-AS15) - *,_ X(S3X) yields 7if(C

2(P)) = 0 for 1 S i£ 15. 
The Hurewicz theorem implies Cj(P) is a homology 16 sphere which it is 
not. Hence the only submersions over projective spaces ( ̂  S2, S4, S8) 
are of types (a) and (b). 

From Adam's result [1] it follows that the only fiber bundles with total 
space, fiber and base each homeomorphic to spheres are cases (c), (d) 
and (e) of the theorem. Now in our situation both total space and fiber 
are unit spheres. To show B is isometric to a sphere in each case we again 
take horizontal orthonormal vectors X and Y. Our procedure, which 
handles the three cases simultaneously, allows us to assert ||AXY|| ^ 1. 
But MxY|| ^ 1 as in the proof of 1.2. From O'Neill's equation it follows 
K*(P x y)= l + 3M x7| | 2 = 4. 

2. To complete the proof of Theorem 1.1 we need another result which 
is of independent interest. 

THEOREM 2.1. For i = 1,2 let ^ be Riemannian submersions with totally 
geodesic connected fibers from M onto B. Assume M is connected and com­
plete. Suppose f is an isometry of M which satisfies the following two prop­
erties for one point peM. 

(!)ƒ*/>—the differential off at p—maps Hlp onto H2f{p) where Ht denotes 
the horizontal distribution of 7tf. 
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(2) Denote the tangent space of M at p by TpM. If E,F e TpM, then 
f*A1EF = A2f EÏ*F where At is the integr'ability tensor ofn^ 

Then ƒ is fiber preserving ana induces f of B so that (f ƒ ) is a bundle 
isometry ofn1 and n2. 

COROLLARY 2.2. Any two submersions n and n which satisfy the hypotheses 
of 1.1 and are of the same type are equivalent provided they are of type 
(a), (b), or (c) in 1.1. Any submersion n in one of these three classes is homo­
geneous. 

Corollary 2.2 completes the proof of 1.1. 
SKETCH OF 2.1. Take a geodesic y in B with y(0) = 7T10). Denote the 

fiber over y{t) by Syit). Then f(Sy(t)) coincides with n2 fiber through f(p) 
by (1) in the theorem and a result on connected totally geodesic subspaces. 
It follows for every qeSy{0), f+Hlq = H2f{q) since these subspaces are 
complementary to the tangent spaces of the fibers. The family {y} con­
sisting of the 7i ! horizontal lifts of y defines an isometry between Sy(0) 

and Sy(t) ([6], [8]). Call this isometry Fy(ty 

The family {foy} are horizontal geodesies since ƒ o y(0) e H2fiq) for 
qeSy{0) and hence is everywhere horizontal [11]. It can be shown {foy} 
are the n2 horizontal lifts of a geodesic v of B with v(0) = n2f(p). This 
family defines an isometry between the n2 fibers over v(0) and v(t) denoted 
by Sv(0) and Sv(t) respectively. Denote this isometry by Fv(t). In fact ƒ o Fyit) = 
Fv(r). It follows f(Sy(t)) = Sv(t). Since B is geodesically complete, ƒ is fiber 
preserving. Routine arguments show the map ƒ of B induced by ƒ is an 
isometry. 

We omit the proof of 2.2 which is lengthy. Substantial use of the cur­
vature equations in [10] is required. I do not know if results analogous to 
those of 2.2 obtain for submersions of types (d) and (e) in 1.1. 

REMARK. A result similar to the first part of 1.1 was obtained by Nagano 
[9] for homogeneous sphere bundles. Since we make no assumption about 
homogeneity our proof relies rather on the properties of submersion 
metrics. In 1.1 of course we assume connected fibers. 
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