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§1 contains typical examples of the application of the methods of [3], 
[4] to group actions. We compute equivariant knot cobordism for 
cyclic group fixed-point free actions. The surgery theory with coefficients 
that we need is outlined in §11. New algebraic X-theory functors rn(A'-> A) 
are introduced to solve geometric problems. For A' = A these are Wall 
surgery groups [7]. 

The knot cobordism group of a manifold, or of a 2-plane bundle over 
a manifold is defined in §111 and computed in general terms of the 
T-groups. In various cases, these T-groups are explicitly computed. The 
coefficient groups in this theory are isomorphic to the high dimensional 
knot-cobordism groups. The knot cobordism group of a manifold can 
be used to decide when sufficiently close codimension two embeddings 
differ, up to concordance, by a knot. 

I. THEOREM 1. Let T be a fixed-point free pi homeomorphism of the 
sphere Z2/c, k ^ 3, with T2 — 1. Then there is at most one equivariant 
concordance class of invariant spheres of dimension 2k — 2 in Z. 

Santiago Lopez de Medrano [5] has computed which (Z2k, T) admit 
at least one invariant codimension two homotopy sphere; for example, 
this is always the case for k even. 

THEOREM 2. Let The a fixed-point free pi homeomorphism of the sphere 
I 2 k + 1 with Tp = Up odd. Then every fixed-point free Zp action (S2k~\ T) 
with S2 / c~Vr normally cobordant to the desuspension of'E/T occurs, and 
only these occur, as the induced Zp-actions on invariant spheres in 
codimension 2. IfS2j+1 is a characteristic [5] invariant sphere of(L, T), there 
is a sequence oj T-invariant spheres S2j+1 a S2j+3 c • • • <= S 2 k _ 1 a S2k+1. 

Combining the above with results of Browder, Pétrie and Wall [1], [8], 
it follows that actions induced on the invariant spheres in codimension 2 
of (Z, T), p odd, are in 1-to-l correspondence with the elements of 

z®z® •••ez = z{p-1)/2. 
Let T be a free action on the sphere E2*"1, k > 2, with Tn = 1. Let 

X(Z, T) be the embeddings of (X, T), as an invariant subspace of a sphere 
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S of dimension 2/c + 1 equipped with a free action T which restricts to 
T on S and with S/T' in a given normal cobordism class, classified up 
to equivariant concordance. 

THEOREM 3. There are "exact sequences" (i.e., free group actions on 
K(E, T) with indicated quotient sets) 

0 -> f 2k+2(Z -» Zn) -+ K(L, T) -• Z -> 0, n odd or /c even, 

0 -* f 2k+2(Z -» Z„) -* K(L, T)-+ Z2-*0, n odd, k odd, 

0 -> FS2k+i(Z -» Zw) -» X(I, T) -• 0, n ei;en and k odd. 

Here T2fc(Z -• Z„) denotes a reduced Grothendieck group of Hermitian 
forms defined over Z [Z] and nonsingular over Z [ZJ. Using a transfer 
homomorphism, we can use Theorem 9 to algebraically describe which 
knot cobordism classes contain a knot invariant under a free Zn-action. 
More computations, including that of "fixed under a semifree action" 
knot cobordism will appear [4]. 

II. Let ƒ : A -> A' be an involution preserving homomorphism of rings 
equipped with involutions. In [4] we describe and in some cases compute 
a group r2k(A -» A') of Hermitian (— l)fc-symmetric forms over A which 
are nonsingular over A'. The map ƒ is said to be locally epic if, given 
u1, - - -, uk in A', there is a unit A in A' with Xuu Aw2, • • -, Xuk in the image ƒ 
Many of the results of this section work if ƒ is only locally epic but, for 
simplicity, we assume ƒ is actually onto. If ƒ is an isomorphism, the 
r group is a surgery obstruction group as defined by C.T.C. Wall [8]. 
In what follows, homology is always taken with respect to local coefficients. 

THEOREM 4. Let (Y,dY)bea manifold pair of dimension n andf: Z\n1 Y] = 
A -+ A' an onto map. A normal degree one map of manifold pairs g : (X, ôX) 
-+(Y,dY) with dX -> dY a homology equivalence with coefficients in A' 
determines an element c(g) ofT2k(A -• A') for n = 2/c and a(g) in L2k+ 1(A

/) 
for n = 2/c + 1. For n ^ 6 the map g is normally cobordant to a A' homology 
equivalence, by a normal cobordism fixed on the boundary, if and only if 
o{f) = 0. 

There is also a realization theorem for these obstructions. Note that 
if g is actually a homotopy equivalence on dX -» dY, o(g) is in the image 
of the canonical homomorphism of L„(A) to T2k(A -• A') for n = 2/c and 
in the image of Ln(A) in Ln(A') for n odd. By first studying geometrically 
the case in which n^ôY) = 7Ü1(7), we in [4] obtain obstruction groups, 
T, for the relative homology-equivalence problem in all dimensions 
greater than 5. Consequently, there is a surgery theory and a classification 
theory of homology-equivalent manifolds and submanifolds which has 
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all the analogous formal properties and extends the surgery theory of 
C.T.C. Wall [8]. 

III. Let C(M) denote equivalence classes of concordant embeddings, 
which are homotopic to the usual one of M in M x D2. More generally, 
for a 2-disc bundle Ç over M, C(M, Ç) denotes equivalence classes of 
concordant embeddings of M in £(£), the total space of Ç, which are 
homotopic to the 0 cross-section. The study of C(M) and C(M, £) plays 
a key role in determining when two embeddings, and, in particular, 
two "close" embeddings of Mn in Wn+2 differ up to concordance by a 
"small knot." Given two embeddings g,f:M -> £(£), we define g + ƒ by 
"thickening"*/ to an embedding #:£(£)-•£(£) and setting g+f = 
gf Gn denotes the knot cobordism group in dimension n. 

THEOREM 5. If M is a manifold of dimension n ^ 3, C(M, Ç) is an 
abelian group. C(Sn) = Gn, n ^ 3. C(Sn) is a direct summand of C(M). 
An element of C(M, Ç) is concordant to the connected sum of the usual 
inclusion g with a knot if and only if it is in the image of the homomorphism 
C(Sn)^C(M,0. 

Set A = ZOiCdE^))] and A' = Z(nlM] and write i// : A -• A' for 
the map induced by dE(Ç) -» M. Let q> be the diagram 

(!) I Ê ) 
THEOREM 6. For Mn a closed manifold, n ^ 4, the following is an exact 

sequence: 

0 - C(M, £) - r;+3(<p) - L£+3(iA)/image [IM ; G/PU]. 

To compute Ts
n + 3((p) we employ the exact sequence ... ~>2J + 3(A)-» 

Ts
n+3(il/) -• Ts

n+3{(p) -> 5L* + 2(A) -> . . . . For n even, Ts
n + 3((p) is caught in 

an exact sequence between two Wall surgery groups. 

THEOREM 1. If M is a simply-connected manifold of dimension n ^ 4, 
then C(M) = C(Sn). In particular, every inclusion M in M x D2 is, for n 
even, concordant to the usual inclusion and, for n odd, is concordant to the 
connected sum of the usual inclusion and a knot. 

Let (p0 be the diagram induced from the group homomorphism Z -> e 
of the integers to the trivial group. 

m - m 
\Z\_Zy -> \ Z [ e ] / 

file:///Z/_Zy
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THEOREM 8. The knot cobordism group Gn is isomorphic to Tn+3((p0\ 
n^A. 

THEOREM 9. Denote the n-torus S1 x S1 x • • • x S1 by Tn. Then C(Tn) = 
C(5" )0 [ IT" ;G/PL] , n^A. 

Theorem 9 is proved by showing that a formula generalizing to re­
groups, the result of [7] and [8] on L(Z x G), is valid in precisely half 
the dimensions. The key geometric part of this argument for T-groups 
is based upon the technique employed in [2] in the proof of a splitting 
theorem for manifolds. 

THEOREM 10. Let Mn be a simply-connected manifold of dimension 
n^A. Then C(S") -> C(M, Ç) is onto. 

THEOREM 11. For M a simply-connected manifold, let f:Mn-> Wn+1 

be an embedding with trivial normal bundle, n ^ 5. If g:M -> W is an 
embedding which is sufficiently close in the C° sense to f then after com­
posing g with a pi homeomorphism of M, the result is concordant to ƒ 
for n even, and ƒ connected sum with a knot for n odd. 

The extent to which this fails for M = Tn is measured by Theorem 9. 
This contrasts sharply with the classical case of C1 close embeddings. 
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