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ABSTRACT. We announce that the function of least area among 
all functions defined in a convex domain, vanishing on its boundary, 
and constrained to lie above a concave analytic obstacle leaves the 
obstacle along an analytic curve. 

We announce a result about the curve of separation determined by 
the solution to a variational inequality. A strictly convex domain Q with 
smooth boundary <3Q is given in the z = xx + ix2 plane together with 
a smooth function \j/(z) which assumes a positive maximum in Q and is 
negative on 3Q. Let K denote the closed convex set of Lipschitz functions 
v satisfying v ^ i// in Q and v = 0 on <9Q. Let us denote by u the function 
of K which minimizes area among all functions of K\ that is 

(1) ueK: 
(\ _L \u | 2 \ l /2 

n (I + \ux\ ) 
(v — u)x dx ^ 0, v e K. 

The existence of such w, actually satisfying ueH2,q(Q) n C1,A(Q), 
1 ^ q < oo, 0 < A < 1, was shown in the work of H. Lewy and 
G. Stampacchia [7] and also in M. Giaquinta and L. Pepe [1]. For u 
there is a set of coincidence / consisting of the points zeQ where 
u(z) = il/(z). Let us call 

(2) r(u) = r = {(xi,X2,x3):x3 = u(z) = \\j{z\zedl} 

the "curve" of separation. 
Up to this time it has only been known that when i// is smooth and 

strictly concave, T is a Jordan curve [2], On the other hand, the corres­
ponding problem for the ueK minimizing the Dirichlet integral has 
been thoroughly studied by H. Lewy and G. Stampacchia [6]. We wish 
to announce here the 

THEOREM. Let ij/ be analytic and strictly concave. Let u be the solution 
of(\). Then F(u) is an analytic Jordan curve (as a function of its arc length 
parameter). 

The demonstration relies on the resolution of a system of differential 
equations and the utilization of the system to extend analytically a con-
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formal representation of the minimal surface which is the graph of u in 
the subset of Q where u > x//. This is the idea of Hans Lewy (cf. for 
example [4], [5]). To derive the system of equations requires knowing 
that u has bounded second derivatives, which was shown in [3]. In order 
to identify the solution, we prove first that T is rectifiable. 

In order to present a precise statement of this first step of the smooth­
ness of r , let us introduce some notations. Set 1, = {xe R3:x3 = 
M(Z),ZGQ}, S = {xeR3:x3 = M(Z),ZGQ - ƒ} c Z, and D = {|f| < 1}. 
Let X : D -» Z be a uniformization (conformai representation) of the 
C 1 A surface E with X(0) = P e T, a fixed point of T. 

THEOREM. Let f = fEbea conformai mapping ofG = {Im t > 0, \t\ < 1} 
onto a Jordan domain fe(G) containing {£:X(£)eS, |£| < e} such that 
fe:(— 1,1) -» X - 1 ( r ) and fE(0) = 0. Then there exists an s > 0 swc/i that 
f^C\G\ 

From this it is clear that the conformai representation X{f(t)} 
provides, locally, a C1 representation of T. The proof of the theorem 
relies on the strict concavity of \// and results of [2] to show that ƒ ' e Lq(G) 
for a q > 2. 

To prove the second theorem mentioned, we assume only that 
ij/ e C3(Q) and is strictly concave. Hence we present a method to rectify 
curves determined by variational inequalities. 
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