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1. Introduction. Let Aw denote the set of all n x n complex matrices A 
whose spectral norm || A || is at most one. Then A„ forms a convex topo­
logical semigroup under matrix multiplication ([6], [7]). The subsemi­
group Zw of AM, consisting of all real nonnegative matrices in A„, is the 
set of all n x n doubly substochastic matrices; that is, real nonnegative 
matrices whose row and column sums are at most one. The subsemigroup 
of Zn consisting of all n x n doubly stochastic matrices will be denoted 
byQn. 

Geometrically, Qn is the convex hull of the group of all n x n per­
mutation matrices ([1], [8]), while E„ is the convex hull of the semi­
group of all n x n subpermutation matrices [9]. The following theorem 
establishes a similar result for A„. 

THEOREM 1. AM is the convex hull of the set of alln x n unitary matrices. 

The proof of the theorem can be obtained by establishing that the 
unitary matrices form the set of extreme points of A„. The result then 
follows by the Krein-Milman theorem. The complete proof will appear 
elsewhere [10]. Another proof of this result is given in [15]. 

Several authors have considered matrix equations involving doubly 
stochastic matrices. In particular, S. Sherman [14] and S. Schreiber [13] 
have considered the solvability of the equation AX = B and D. J. Hart-
fiel [5] has considered the solvability of the equation AXB = X, where 
A, B, and X are doubly stochastic. The main purpose of this note is to 
consider the system of matrix equations 

(1.1) AX = B and BY = A, 
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where A and B are arbitrary complex or real m x n matrices and where 
X and Y are in A„, En or QM. These ideas are then used in §§3 and 4 to 
investigate the Green's relations and regularity in those semigroups. 

2. The equations AX = B, BY = A. The following theorems charac­
terize the solvability of the equations (1.1) over A„, I„ and Qn in terms 
of solvability over certain matrix groups. 

THEOREM 2. For arbitrary m x n complex matrices A and B, the 
equations (1.1) are solvable f or X, YeAn if and only if A = BUfor some 
unitary matrix U. 

THEOREM 3. For arbitrary m x n real matrices A and B, the equations 
(1.1) are solvable for X, 7eZ„ [QJ if and only if A = BP for some 
permutation matrix P. 

The proof of Theorem 2 is based on a theorem of Witt [16] and is 
fairly straightforward. Although it might be expected that the proof of 
Theorem 3 would follow from or be similar to the proof of Theorem 2, 
an entirely different approach is apparently needed. The proof for Z„ 
and £2„ is based in part on a theorem of Hardy, Littlewood and Pólya 
[4, Theorem 4.6]. These solvability theorems will now be used to in­
vestigate the algebraic structures of the convex semigroups A„, £„ and Qn. 

3. The Green's relations. The Green's relations 0t, if, / , ^f, and 3 
play a fundamental role in the study of the algebraic structure of semi­
groups. For an arbitrary semigroups S with a9beS, the relation 01 \J£, f~\ 
is defined by a 3$ b {a<£ b,af b] if and only if a and b generate the 
same principal right [left, two-sided] ideal in S. Then Jf = 01 n i f 
and 9 is defined to be the join Sty Se [2, Chapter 3]. The problem of 
characterizing the Green's relations on An9 Z„ and Q„ can be solved by 
characterizing solutions to certain matrix equations. The results in this 
section follow from Theorems 2 and 3, together with their duals obtained 
by taking transposes in the equations (1.1). Notice that Q) = f on these 
semigroups since they are compact [6]. 

THEOREM 4. Let A and B belong to the semigroup A„. Then 
(i) A 0tB if and only if A = BU for some unitary matrix U; 

(ii) AJ^Bif and only if A = VB for some unitary matrix V; 
(iii) Affl B if and only if A = BU = VB for some unitary matrices U, 

V; 
(iv) AQ)B if and only if A = VBU for some unitary matrices U and V. 

THEOREM 5. Let A and B belong to the semigroup £„ of doubly sub-
stochastic matrices. Then 
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(i) A 01B if and only if A — BP for some permutation matrix P; 
(ii) A $£ B if and only if A = QB for some permutation matrix Q ; 
(iii) A3tf B if and only if A = BP = QB for some permutation matrices 

P and Q; 
(iv) A3)B if and only if A = QBP for some permutation matrices P 

and Q. 

It follows that Theorem 5 also characterizes the Green's relations on 
the semigroup Qn of doubly stochastic matrices [11], since the per­
mutation matrices are contained in Qn. Moreover, these characterizations 
can be used to show that the maximal subgroups of A„ are isomorphic 
to full unitary groups, while E„ and Qn have finitely many maximal 
subgroups, each of which is isomorphic to a direct product of full sym­
metric groups [3]. 

4. Regularity. An element a in a semigroup S is said to be regular 
if the equation a = axa is solvable for xeS. If in addition x = xax, 
then a and x are said to be semi-inverses. In this section the regular 
elements in An, E„ and Qn are investigated. Clearly not every matrix 
in A„ is regular. In particular, the only nonsingular regular members of 
AM are the unitary matrices. The following concepts will facilitate the 
characterizations of regularity. 

The singular values of an n x n complex matrix A are the positive 
square roots of the eigenvalues of A*A, where A* denotes the conjugate 
transpose of A. Now A is a partial isometry if the linear transformation 
represented by A preserves distances on the range of A*. The Moore-
Penrose generalized inverse [12] of A is the unique matrix A+ defined 
by A + y = x if Ax = y and x is in the range of A*, and A+y — 0 if 
A*y = 0. 

Now it can be shown [10] that E e A„ is idempotent if and only if 
there is a unitary matrix 17 such that UEU* is diagonal with 0's and l's 
on the diagonal. This fact, together with the results in §3, lead to the 
following characterizations of regularity. The details of the proof will 
appear elsewhere ([10], [11]). 

THEOREM 6. Let AeAn [X„,QJ. Then the following statements are 
equivalent. 

(i) A is regular in An [ZW,QJ. 
(ii) A* is the unique semi-inverse of A in AM[Z„, QJ. 
(iii) The singular values of A are 0 and 1. 
(iv) A is a partial isometry. 
(v) ||>4|| = 1 if A is nonzero. 
(vi) A+ = A*. 
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