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ABSTRACT. Topological conjugacy and various concepts of structural 
stability are defined, motivated, and criticized. Two basic problems 
emerge: characterization of structural stability and classification up 
to topological conjugacy. Solutions to these problems are outlined for 
linear automorphisms and the general characterization problem is 
discussed. 

This paper is an expanded version of an invited address given at the 
summer meeting of the American Mathematical Society in September, 
1971. Much of the material here was also covered in a series of lectures 
given at the Institut des Hautes Etudes Scientifiques in the fall of 1971. 

Our notation is that of [2] and [3]. M always denotes a smooth (C00), 
finite-dimensional manifold, sometimes but not always compact, and 
always without boundary. TM denotes the tangent bundle of M and for 
x e M, TJA denotes the tangent space to M at x. If h : M -» M' is a C1 

map, then Th : TM -> TM' denotes the tangent map of h and for xeM, 
Txh:TxM -* THx)M' denotes the tangent (= derivative) to h at x Thus 
if x e TJSd is the tangent vector at 0 to a curve c : R -*• M with c(0) = x 
then (Txh)x is the tangent vector at 0 to the curve hoc:R-> M'. R always 
denotes the (additive group of) real numbers and Z the (additive group of) 
integers, and C denotes the complex numbers. By a diffeomorphism we 
always mean a C1 diffeomorphism; i.e. a map h:M -» M' which is bi-
jective and such that both h and h"1 are C1. We denote by DiflF(M) the 
group of all C1 diffeomorphisms of M (Le. from M onto M); the group 
operation is, of course, composition. 

An expanded version of an invited address given at the summer meeting of the American 
Mathematical Society in September 1971 ; received by the editors March 27, 1972. 

AMS 1970 subject classifications. Primary 58F00; Secondary 58F10, 58F15. 
Key words and phrases. Cascade, flow, topological conjugacy, differentiable conjugacy, 

structural stability, north pole-south pole map, hyperbolic toral automorphism, strong 
structural stability, absolute structural stability, relative structural stability, symplectic 
manifold, twist stability, topological stability, semistability, Yin-Yang problem, hyperbolic 
linear automorphism, in-set, out-set, on-set, Anosov diffeomorphism, selector, conjugacy 
selector, adjoint representation, ergodic, infinitesimally ergodic, Sobolev space, hyperbolic 
invariant set, nonwandering set, Q-hyperbolic, P-hyperbolic, axiom A, weak axiom A, 
essential spectrum, strong transversahty condition, weak transversality condition, in-set, 
stable manifold, out-set, unstable manifold. 

1 ACKNOWLEDGEMENT. Research supported by the National Science Foundation 
(contract 144-B695), the Wisconsin Alumni Research Foundation (project 120432), and 
L'Institut des Hautes Etudes Scientifiques. 

Copyright © American Mathematical Society 1972 

923 



924 J. W. ROBBIN [November 

The paper begins with a long introduction (§1) where the basic de­
finitions and problems are defined and motivated. I have tried there to 
explain how the concept of structural stability might be useful in practical 
applications and I have given several definitions of the concept and in­
dicated some of their weaknesses. The two basic problems defined there 
(Problems I and II of §1.E) are those of characterizing structural stability 
and classifying dynamical systems up to topological conjugacy. In §§2 
and 3 I indicate solutions of these two problems for the case of linear 
automorphisms; the bulk of the rest of the paper is devoted to the problem 
of characterizing structural stability on an arbitrary compact manifold. 

During the preparation of this paper I was supported by the National 
Science Foundation (contract 144-B695), the Wisconsin Alumni Research 
Foundation (project 120432), and the I.H.E.S., and I would like to express 
my gratitude to this support. I would also like to thank the I.H.E.S. and 
its director N. Kuiper for their hospitality. Thanks also to R. Abraham 
for reading and criticizing a first draft of the introduction. 

The present paper develops some of the ideas in the important survey 
article of Smale [51]; the interested reader will doubtless want to consult 
this reference. 

1. Introduction. 
1A. The concept of a dynamical system. In physics, a dynamical system 

is usually described by an ordinary differential equation; i.e. a vector field 
on a manifold M. Under suitable hypotheses the vector field generates a 
"flow" on the manifold; i.e. a group homomorphism 

*-*Diflf(M) :*-•ƒ' . 

The study of the topological properties of such flows is called "the qua­
litative theory of differential equations". 

The discrete analog of a flow is a group homomorphism 

Z^Diff(M):n^/ M . 

Such a group homomorphism is called a "cascade" in [5]; it is completely 
determined by its generator/. This generator is the discrete analog of the 
"infinitesimal generator" (i.e. the vector field) of a flow. Thus for us a 
discrete dynamical system on a manifold M is simply a C1 dififeomorphism 
ƒ from M onto itself; i.e. an element of Diff(M). 

We shall give Diflf(M) the C1 topology (the C1 fine topology if M is not 
compact: see [26]). With this topology, Diff(M) is an open subset of 
C1(M,M)(see [26]). 

The starting point for a topological theory of discrete dynamical 
systems must be a notion of "topological equivalence" of two systems. 
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1.1. DEFINITION. Let M and M' be smooth manifolds and/G Diff(M) and 
g e Diff(M'). Then ƒ and g are topologically conjugate iff there exists a 
homeomorphism q>:M -> M' such that # = cpo focp'1. Such a homeo-
morphism q> is called a topological conjugacy between ƒ and g. 

We shall also say that ƒ and g are differentiably conjugate and that <p 
is a differentiable conjugacy between ƒ and g in case (p satisfying 1.1 is a 
diffeomorphism. However, we shall soon see that this notion is far too 
strong for stability problems. Thus the word "conjugate" unmodified 
shall always mean "topologically conjugate". 

Note that if q> is a conjugacy between/and g, then it is also a conjugacy 
between ƒn and g" for neZ: 

(1) tf = q>of"o<p-i. 

Thus, in particular, (p maps periodic points of/to periodic points of g. 
We might expect that the appropriate equivalence relations for flows f 
and g* should be 

(2) 0< = < p o / < o < p - i 

for teR. This will not do; if we reparameterize a flow ƒ' by slowing it 
down a tiny bit to obtain a flow g\ then ƒf and ç} will not be equivalent 
in the sense of (2) as the periods of periodic orbits have changed. Nonethe­
less, the reparameterization has not changed the qualitative picture in any es­
sential way. Thus a good definition of equivalence for flows must be more 
complicated than (2); this is why the discrete theory is much simpler than the 
continuous theory. Many different definitions of equivalence for flows 
have been proposed (see [42]). Of course, (2) could be a reasonable def­
inition for flows without periodic orbits; e.g. gradient flows. 

If/and g are topologically conjugate, then they have exactly the same 
topological properties; conversely, to show that particular ƒ and g are 
not conjugate, one exhibits a topological property of/which fails for 
g. We illustrate this with some simple examples where M = M' = R. 

1.2. EXAMPLE, ƒ (x) = 2x, g(x) = 8x for xeR. f and g are conjugate; 
a conjugacy cp :/?->/? is given by cp(x) = x3 for xeR. Note that ƒ and g 
are not differentiably conjugate, for if <p(2x) = 8<p(x) and q> is differen­
tiate, then <p{0) = 0 and D<p(0) = 0. 

1.3. EXAMPLE. f(x) = 2x, #(x) = -2x. ƒ and g are not conjugate as ƒ 
preserves orientation and g reverses orientation. 

1.4. EXAMPLE. f(x) = 2x, #(x) — ^x. ƒ and g are not conjugate as 
l im^^ gn(x) = 0 G R for all x e R while l im^^ fn(x) = oo 4 R for x # 0. 

1.5. EXAMPLE. f(x) = ax, g(x) = bx where a,beR {0,1,-1}. Com­
bining the ideas of the previous examples we see that ƒ and g are conjugate 
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if and only if a and b belong to the same component of R\{091, — 1}. 
When this is so a conjugacy cp between ƒ and g is given by (p(x) = Xe where 
\a\c = \b\. In §3 we will generalize this example from R to Rm, 

IB. Structural stability. We now turn to the notion of structural sta­
bility which is motivated by the following metaphysical2 problem: 
Suppose a physicist has a physical theory which assigns to each physical 
system S of a certain type a manifold M whose points are to represent the 
possible states of S and a dynamical system g e Diff (M) which describes 
the evolution of S in (discrete) time. The system g will depend on certain 
parameters (e.g. masses of particles) which must be determined by meas­
urements subject to experimental error. Also the theory may only be an 
approximation to a better theory (e.g. classical approximation to a more 
exact relativistic theory) and this also introduces error. 

Given a physical system S our physicist performs the measurements 
and applies the theory to obtain a dynamical system ƒ, but because of the 
error mentioned above, all he (or she) knows about the "true system" g 
(the one which accurately describes S) is that it is close to ƒ ; i.e. g lies in 
a certain neighborhood N of ƒ where the size of N is determined by the 
error. 

The physicist will make predictions of the qualitative behavior of the 
system S by studying ƒ, but the system is actually described by g which 
he does not (and cannot) know. His predictions are worthless if g is ra­
dically different from ƒ. He would therefore be happy to know that g 
is conjugate to ƒ. This will be true if ƒ is structurally stable and the error 
neighborhood N is sufficiently small. 

1.6. DEFINITION. Let M be a smooth manifold and/e Diff(M). Then/is 
structurally stable iff there exists a neighborhood N of ƒ in Diff(M) such 
that every g e N is topologically conjugate to ƒ. 

To the best of my knowledge, this definition (or rather an analogous 
one for flows) is due to Andronov and Pontrjagin [4]. 

WTe shall now consider some examples. The fundamental intuition is 
this: A system is structurally stable iff its qualitative behavior is unchanged 
by a small perturbation. 

1.7. EXAMPLE . Let ƒ rotate the two-sphere S2 through angle 9 = 2n/3. 
Thus ƒ 3 = identity. If g rotates S2 through angle 6 + e, then g3 ^ id. 
Hence ƒ is not structurally stable. Similar considerations show that no 
rotation of a sphere is structurally stable. 

1.8. EXAMPLE. Identify the two-sphere S2 with the extended complex 
plane: S2 = C u {oo}. Let ƒ : S2 -• S2 be 

2 The word metaphysical is here taken in its most literal sense. 
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ƒ (z) = 2z, z e C, 
/(oo) = oo. 

This diffeomorphism is called the "north pole-south pole map"; if 0 
is the "north pole" and oo is the "south pole", then the poles are the only 
fixed points and every point not a pole tends to the south pole under 
positive iteration and to the north pole under negative iteration; i.e. 

lim fn(x) = oo, lim f-\x) = 0, 
« - • o o « - •oo 

for x ^ 0, oo. See Figure 1. 

O = /(O) = 0tt» 

oo = / (oo) = (f){oo) 

FIGURE 1. The north pole-south pole map on S2. 

The north pole-south pole map is structurally stable. This follows 
from the general theorem described below (§ 9) but the reader may want 
to amuse himself by finding a direct proof. 

This example illustrates an important technical difficulty in proving 
structural stability; Conjugacies between ƒ and a perturbation g of ƒ need 
not be unique. To illustrate this take ƒ = g. Let h : S1 -> S1 be continuous 
and "suspend" h to obtain cp:S2 -+ S2: 

(p(z) = rh(eie), <p(co) = oo, 

for z = rew G C Then ƒ o cp = q>of and <p is a homeomorphism if and 
only if h is.. In particular, for g close to ƒ we can find solutions cp of g o <p = 
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(pof which are close to the identity and not homeomorphisms. To prove 
structural stability one usually "splves" for (p in this equation g o (p == cp o ƒ 
and then shows that (p is a homeomorphism. The example shows that one 
must be careful about the particular solution (p which one takes. 

1.9. EXAMPLE. A continuous group automorphism of the torus Tm = 
Rm/Zm is described by an m x m integer matrix with determinant ± 1. 
If this matrix has no eigenvalue of complex modulus 1, then the auto­
morphism is called a "hyperbolic toral automorphism". The periodic 
points of such an automorphism are dense; indeed any point with ra­
tional coordinates is periodic. The simplest example is found by taking 
the matrix {\ {). 

Hyperbolic toral automorphisms are examples of Anosov diffeomor-
phisms and by the theorem of Anosov (see § 4) they are structurally stable. 
In contrast to Example 1.8, the conjugacy (p is unique (provided that it 
is sufficiently close to the identity). 

1C. Quantitative problems. Suppose as before that a physicist is stud­
ying a physical system S whose possible states are represented by the 
points of a smooth manifold M and with dynamics g G Diff (M). Thus if 
yeM represents the state of the system S at time t = 0, then gn(y) repre­
sents the state of the system at time t = n. As before, the physicist measures 
g and obtains ƒ G Diff (M) and an error neighborhood N of ƒ (so that 
g e N). If he wants to make quantitative (as well as qualitative) predictions 
based on ƒ, he will have to know not only that g is conjugate to ƒ but also 
how far the conjugacy (p between ƒ and g is from the identity. (We will 
illustrate this below.) This motivates the following: 

1.10. DEFINITION.3 ƒ G Diff (M) is strongly structurally stable iff for every 
neighborhood N0 of the identity in C°(M, M) there is a neighborhood 
N of ƒ in Diff(M) such that for all g e N there exists a homeomorphism 
q>e N0 which is a conjugacy between ƒ and g. 

(The appropriate topology on C°(M, M) is the compact-open topology 
which reduces to the C°-topology when M is compact.) 

We next give an example to show how our physicist might use this 
definition. 

Let M be compact and d be a metric on M. This determines a metric 
d0 on C°(M, M) by 

d0(<P, *A) = sup d{(p(x), \j/(x)) 
xeM 

for <p,i// G C°(M,M). 
Suppose the measured system ƒ has a fixed point peM with open basin 

3 It is reasonable to conjecture that strong structural stability is equivalent to structural 
stability; there is no known counterexample to this conjecture. 
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of attraction U; i.e., lim^^f^x) = p for xe U. If the true system g is 
conjugate to ƒ, then g will have a fixed point q with q = (jp(p) having open 
basin of attraction V = (p(U). Here q> is a conjugacy between ƒ and #. 

Note that d(p, q) ^ d0(id, q>) where id denotes the identity map of M. 
Suppose ƒ is strongly structurally stable and s > 0 is given. The physi­

cist takes for iV0 the set of all (p G C°(M, M) with d0(id, (p) < s; he finds 
that the neighborhood AT of ƒ in Definition 1.10 is large enough to allow 
him to conclude that g e N. Thus he knows the true attractor q to within 
error s as d(p, q) ^ d0(id, q>) < s. 

Suppose the system S is in state y which the physicist measures ob­
taining a state x with experimental error ô (so d(x, y) < ö). He notes that 
d(x, M\U) ^e + Ô. Let z = (p'^y). Then d(x, z) ^ d(x, y) + d{q>(z\ z) 
< Ô + e. Thus z G U so that j ; = <p(z) G <p(U) = V. Thus l i m ^ ^ g\y) = q. 
The physicist now knows that the system tends to an equilibrium state q 
and he knows q within error s (as d(p, q) < s). 

Next we consider an even stronger concept of structural stability: 
absolute structural stability. The definition is essentially due to Franks 
[9]; the improved version we give here is due to Guckenheimer [12]. It 
is motivated by mathematical considerations; a theorem due to Franks, 
Guckenheimer, and myself (see § 9) gives a nice geometric characterization 
of it. This concept can also be given a nonmathematical motivation: 
If ƒ is absolutely structurally stable our physicist can easily estimate the 
error in his quantitative predictions (i.e. the size of N0) in terms of his 
experimental error (i.e. the size of N). (See Definition 1.10.) 

1.11. DEFINITION. Let ƒ G Diff(M). A conjugacy selector for ƒ is a function 
(not necessarily continuous) <D : N -• C°(M, M) where N is a neighborhood 
of ƒ in Diff(M) such that 0( ƒ ) = identity and for all g G N, ®(#) is a homeo-
morphism and a conjugacy between ƒ and g. 

Thus ƒ is structurally stable iff there exists a conjugacy selector for ƒ ; 
ƒ is strongly structurally stable iff there exists a conjugacy selector for ƒ 
which is continuous at ƒ. 

Now suppose M is given a Riemannian metric. This determines a 
metric d on M which in turn determines a metric d0 on C°(M, M) as above. 

1.12. DEFINITION. Let ƒ G Diff(M). Then ƒ is absolutely structurally stable 
iff there exists a conjugacy selector O : N -• C°(M, M) for ƒ and a real 
number K > 0 such that d0(id, <P(#)) fg Kd0(f, g) for g G AT. 

This definition is easily seen to be independent of the choice of the 
Riemannian metric in case M is compact. It is a kind of Lipschitz con­
dition, but note that the metric d0 does not give the topology of N (which 
is the C1 topology). Thus the Lipschitz condition in 1.12 does not ob-
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viously follow from the mean value theorem and the condition that 
<D: N -• C°(M9 M) be a C1 map of Banach manifolds.4 

ID. Criticism. Once we see the definition of structural stability and its 
motivation we are immediately tempted to change the definition. Thus, 
if ƒ is constructed via a physical theory, it will likely have special pro­
perties (e.g. preserve some structure) and if the theory is correct, the true 
system g will share these properties. This suggests restricting ƒ and g to 
some subset J* of Diff(M). Also the topology on $F which measures the 
experimental error might not be the topology on 3F induced by the C1 

topology on Diff(M). These ideas are easily incorporated into a definition. 
1.13. DEFINITION. Let M be a smooth manifold and 3F be a subset of 

Diff (M) endowed with a topology possibly different from the induced 
topology. Then ƒ e SF is structurally stable relative to 3F iff there exists 
a neighborhood AT of ƒ in SF such that each g e N is topologically conju­
gate to ƒ. 

For many examples of J*, structural stability relative to $F is equivalent 
to structural stability. For example, this is true when 3F is the set of 
gradient diffeomorphisms5 (with the C1 topology) on a compact Rie-
mannian manifold M. In § 2 we show that it is also true when M = Rm 

and <F = Laut (R
m\ the set of all linear automorphisms of Rm; here & 

has the topology it inherits as an open subset of the finite dimensional 
vector space L(Rm

9 R
m) of linear operators on Rm. 

However, as C. Robinson pointed out to me, Definition 1.13 fails to 
cover many cases of interest in physics. Let SF be the set of symplectic 
diffeomorphisms of a symplectic two-manifold M (see [2]). Let xeM be 
an elliptic fixed point of / e # \ According to the Moser twist stability 
theorem (see [2, p. 186]) there will be (generically, see [43]) a family of 
/-invariant, simple closed curves y converging to x (see Figure 2). The 
rotation number (see [13]) of ƒ restricted to a typical y approaches a limit 
as y converges to x. This limit is a topological invariant which can be 
different for g e êF close to ƒ. Thus ƒ is not structurally stable relative to 
!F. It seems that a new concept of structural stability is needed to cover 
this case.6 

We next indicate the consequences of two obvious changes in the De­
finition 1.6 of structural stability. First, if arbitrary C° perturbations g 
of ƒ are allowed, ƒ will never be structurally stable (in this new sense). 

4 Nonetheless, I conjecture that absolute structural stability is equivalent to structural 
stability. 

5 A gradient diffeomorphism is one of form ƒ i where f is the flow of a gradient vector 
field. 

6 [2] contains a good introduction to the theory of symplectic manifolds and their 
relation to classical mechanics. The introduction and conclusion of [2] also contain interest­
ing philosophical remarks on stability questions. 
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For if x is an isolated fixed point of ƒ then there exists a C° perturbation 

FIGURE 2. The Moser Twist Stability Theorem. 

g of ƒ having a tiny disc of fixed points about x so g and ƒ are not topo-
logically conjugate. In this regard, the concept of "topological stability" 
(also called "semistability") of Walters [54] is of interest. This definition 
allows arbitrary C° perturbations but weakens the notion of conjugacy. 
Nitecki [30] is able to show that all known examples of structurally stable 
systems are semistable in this sense. 

Secondly, if one modifies Definition 1.6 of structural stability by re­
placing the words "topologically conjugate" by the words "differen-
tiably conjugate", one obtains a definition of structural stability which 
is never satisfied if M is compact. The reason is as follows: From the C1 

genericity of weak axiom A (see § 7) and the fact that the nonwandering 
set is always nonempty when M is compact, it follows that there is a 
dense subset of Diff (M) each element of which has a periodic point and 
also has only finitely many periodic points of each period. Let g = 
<P ° ƒ ° <P_1 where #,<p, and ƒ are all diffeomorphisms and suppose x is 
a periodic point of ƒ (say fn(x) = x) so that y = (p(x) is a periodic point 
of g. Differentiating yields 

Tyg
n = (Tx(p)(Txf»)(Txq>r\ 

which shows that the linear operators Tyg
n and Txf

n have the same eigen­
values. These eigenvalues can be changed by a small perturbation. It 
follows easily that no ƒ can be stable in this new sense. 

Of course one might be able to demand differentiable conjugacies if 
at the same time one radically restricts the class of allowable perturbations 
as in Definition 1.13. Sternberg's linearization theorem (see [13]) is a 
theorem of this kind. One might restrict attention to C diffeomorphisms 
(r ^ 2) without periodic points and allow only C perturbations and 
expect stability with differentiable conjugacies.7 Alternatively, one might 

7 We assume here that the C closing lemma is false. See [37] and [38]. 
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allow only perturbations supported in the complement of the closure of 
the periodic points. I know of no theorems in these directions. 

Finally, I should point out that if one of these definitions is to be used 
by a physicist as envisioned above, then he will have to compute some, 
but not all, of the quantities asserted to exist. Thus to use 1.12 for example 
he will want to know JV and K but not Q>(g) (since he does not know g). 
Thus partially constructive proofs of stability will be of more use to the 
physicist than nonconstructive proofs. Of course, the nonconstructive 
proofs are still important; they clarify the internal mathematical structure 
of the theory and provide encouragement to someone who actually wants 
to compute JV and K. 

IE. The general problems. Two seem to be natural: 

Problem I. Given a class SF of discrete dynamical systems, characterize 
the structurally stable systems of # \ 

Problem II. Given a class #" of discrete dynamical systems, classify the 
elements of J* up to topological conjugacy. 

In Problem I, one may replace structural stability (1.6) by any other 
kind of stability (e.g., 1.10, 1.12 or 1.13). 

These problems are vaguely stated and admit many different kinds of 
solutions. For example, there is always the trivial solution (ƒ is stable 
if and only if/ is stable). Good solutions will involve conditions which are 
either easy to verify or theoretically interesting. The smaller the class J^, 
the more specific the conditions should be. 

In §§ 2 and 3 we shall outline solutions to these problems for #" = set 
of linear automorphisms of Rm. The remainder of the paper is mostly 
devoted to Problem I (in the case of absolute structural stability) where 
& = Diff(M) and M is compact. 

An ideal solution to Problem II would be for the case where SF is 
a very large (i.e. residual) subset of Diff (M). This problem has been called 
the "Yin-Yang" problem by Abraham [1] because of its analogy to 
Oriental philosophy. It is probably too difficult to admit a reasonable 
solution. 

2. Structural stability of linear automorphisms. In this section we out­
line a solution of Problem I in case &* = Laut {Rm\ the set of linear auto­
morphisms of Rm. The following definition is crucial. 

2.1. DEFINITION. Let £ be a Banach space and F a continuous linear 
automorphism of E. Then F is hyperbolic iff its spectrum contains no 
complex number of modulus one. 

We shall also say that F is a pure contraction when its spectrum lies 
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entirely inside the unit circle (i.e. in the set \z\ < 1), that F is a pure ex­
pansion when its spectrum lies entirely outside the unit circle (i.e. in the set 
\z\ > 1), and that F is totally nonhyperbolic when its spectrum lies entirely 
on the unit circle \z\ = 1. 

Now let feLaut(R
m) and XeC. Let Ek{f) s Rm be the largest vector 

subspace of Rm, invariant by/, and which is such that the only eigenvalues 
of/restricted to this subspace are X and X. When X is real this is the general­
ized eigenspace of X; i.e. the kernel of (ƒ — X)m. In general, Rm is the direct 
sum of the Ex(f) as X ranges over the eigenvalues of/. 

Let 

w+(f)= Y EÀ(n 

w-(f)= y Ex{f\ 

w°(f)= y Ex(n 
UPi 

and 
fe=f\We(f) 

for e = +, —, 0. Thus by linear algebra we have an/-invariant direct sum 
decomposition 

Rm = w+(f) e w~{f) e w°(f), 
f = f+®f-@f0. 

Note that ƒ+ is a pure contraction, ƒ_ is a pure expansion, and /0 is totally 
nonhyperbolic. Moreover, ƒ is hyperbolic iff W°(f) = 0. The spaces 
W±(f) admit a nice topological description. 

2.2. LEMMA. I. xe W+(f) if and only if lim^^ f n(x) = 0. 
II. x e W'(J) if and only if l i m ^ ƒ ""(x) = 0. 
III. Given a norm on Rm there exist constants c > 0 and r wft/z 0 < r < 1 

5wc/z that for n ^ 0: 

||/«(x)|| ^ cr"||*||, /o rx6W + ( / ) , 

and 

||/-"(x)|| ^cr-w | |x||, / o r x e ^ - ( / ) . 

Moreover, the norm can be chosen so that c = 1. 

The proof of the lemma is an exercise in linear algebra which is left to the 
reader. The lemma motivates the following terminology: W+(f\ W~{f\ 
and W°(f) are called respectively the inset, the out-set, and the on-set 
of ƒ. (See Figure 3.) 

Problem I is now solved by 
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x f(x) 

FIGURE 3. f(xl,x2) = (2xl9ix2).fi& a hyperbolic linear automorphism of R2; W+(f) = 
Ox/? , W~(f) = R x 0. Note that the hyperbolas x1x2 = constant are invariant under/. 

2.3. HARTMAN'S THEOREM. A linear automorphism f of R™ is structurally 
stable if and only if it is hyperbolic. 

PROOF . "only if'. Assume ƒ is not hyperbolic; i.e. W°(f) # 0. Then 
there exist many points x e W°(f) such that the orbit of x by ƒ is bounded 
and lim,,^^ fn(x) ^ 0. Compose ƒ with a "contraction" which is C1 close 
to the identity and this property is destroyed Thus ƒ is not structurally 
stable. 

"if".8 Given {: Rm - /T, define ||£||0 by 

llfllo = sup ||flx)||, 

and if £ is C1 define |i by 

5||i = | |{ |o+sup| |D«x) 

We denote by B the Banach space of all continuous functions rj:Rm -• Rm 

with \\rj\\0 < oo. We let id denote the identity of R*1 and 1 denote the iden­
tity of B. 

Suppose g is a C1 approximation to ƒ. Let Ç = f"1 og — id so that 
# = ƒ o (id + Ç) and || <̂  || x is small if g is C1 close to ƒ. Wre seek a homeo-
morphism cp:Rm -> K" of the form (f> = id + */, where rç e 5 such that 

8 Hartman's original proof can be found in [13] or [14]. The proof we give here is due 
independently to Palis [32], Pugh [39], and myself and is inspired by Moser [25]. 
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(1) go<p = q>of. 

Then (1) takes the form 

(n ( i - r > 7 = K,(»j) 
where 

f*n =f-1oriof 

and 

(2) R#i)= -Ço(id + n). 

Clearly ƒ * is a bounded linear operator on B and R^.B -» B has a 
small Lipschitz constant; in fact, by the mean value theorem, 

0) | | ^ l ) - ^ 2 ) | | o ^ | | € | | l | k l - f l 2 | | o 
îotrjurj2€B. 

Now 1 — ƒ * is invertible. To see this note that B = B+ © 2?~, where 
5 1 is the set of all rj e B such that Y\:Rm-*W± ( ƒ ). (This is because ƒ is 
hyperbolic so JT = W+{f) 0 WH/M Thus 

00 

(i-ƒ*)-'£= E n 
n = 0 

for (e/?~ and 
00 

( 1 - / * ) - ^ = - I ƒ *-»C 
« = 1 

for CeB+ (Neumann series) and these series converge uniformly by 
Lemma 2.2, III. 

Thus (1') can be written 

(4) ^(l-rr1*^). 
By (3) the Lipschitz constant for the nonlinear operator on the right is 
bounded by ||(1 - / # ) _ 1 | | ||^||i which is less than one if JJ <̂  || x is small. 
Thus for g close to ƒ, (4) has a unique solution rjeB and thus (1) has a 
solution. 

To complete the proof one must show that q> is a homeomorphism. 
This is done by reversing the roles of ƒ and g and using the uniqueness 
of the solution rj. We refer the reader to [39] (for example) for details. 

We next consider other notions of stability. Let & = Laut (R
m) have 

the topology it inherits as an open subset of L(Rm, Rm\ the finite dimen­
sional vector space of all linear operators on Rm. This topology is much 
weaker than the C1 topology; if/, gs^ are distinct, then ||/— g\x 

2;||/-flr| |o = oo. 
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2.4. THEOREM. Let ƒ'e 2F = Laut(R
m). Then the following are equivalent: 

I. ƒ is hyperbolic; 
II. ƒ is structurally stable; 

III. ƒ is structurally stable relative to !F ; 
IV. ƒ is absolutely structurally stable. 

PROOF . We have already shown I if and only if II. The proof that III 
implies I is essentially the same as the proof that II implies I given above. 
Thus if W°( ƒ ) 7e 0, then ƒ has bounded orbits other than 0. Approximate 
ƒ by g e 3F with W°(g) = 0. Then g has no bounded orbit (other than 0) 
and is therefore not conjugate to ƒ. This shows III implies I. 

To prove I implies III we use Hartman's theorem and a trick. First we 
consider a special case: Suppose ƒ is a pure contraction. Let 0:Rm -+ R 
be a smooth nonnegative function with compact support and equal to 1 
on a neighborhood U of 0. Given g e !F consider h : Rm -+ R"1 defined by 

h(x) = 6(x)g(x) + (1 - 9(x))f(x) 

for x e Rm. Then h\ U = g\ U and h tends to ƒ in Diff(Rm) as g tends to ƒ in 
#". Thus for g close to ƒ in #", Hartman's theorem gives a homeomor-
phism \\i\Rm -• Rm with ho\jj = \\j o f9 whence g o \j/(x) = \j/ o f(x) for 
x e\l/-\U). Now define cp :Rm - Rm by 

(p(x) = g-no^of»(x) 

for xeRm where n ^ k and /"(x) eij/'1^) for all n ^ k (as ƒ is a pure 
contraction). Then cp is well defined (the definition is independent of n) 
and clearly satisfies g° (p = (p°f. This proves the special case. 

For the general case assume that ƒ is hyperbolic and g is close to ƒ in 
&. Then g is also hyperbolic and the splittings Rm = W+(f) 0 W~(/) 
and i?m = W+(#) © W~(g) are close. By replacing g with something 
conjugate to it by a linear conjugacy close to the identity we may assume 
that W±(f) = W±{g). By the special case note that ƒ+ and g+ are 
topological^ conjugate. Taking the direct product gives that ƒ and g 
are conjugate proving I implies III. 

Clearly IV implies II. To prove I implies IV we examine the proof of 
Hartman's theorem given above. There we found rj = cp — id as the 
unique fixed point of the contraction map T:B -> B given by (see (4)) 

rfo)= -(i-rr^o{id + rj) 
îovrjeB. Note that 

(5) ||r(0)||0 s cul 
for suitable c. Next recall 
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2.5. BANACH'S CONTRACTION PRINCIPLE. Let B be a closed ball about the 
origin in a Banach space (or possibly the whole Banach space) and let 
T:B-+B satisfy 

||r(ih) - r(i,2)|| s a\\fit - i,2|| 
for r\u Yl2sB (where 0 < a < 1) and ||r(0)| | ^ s . Then there exists a 
unique rjeB such that T(rj) = rj. Moreover, ||rç|| ^ s/(l — a). 

To prove 2.5 let r\n = TM(0). As 
00 00 c 

E lk+i - *A ^ E a1kill ^i—-> 
«=o n = o l — a 

it follows that lim rjn = rj exists and satisfies the conclusions of 2.5. This 
is of course the s tandard proof. 

N o w 

d0{q>, id) = | | ç > - i d | | 0 = ||i?||0 

and 

d o t o , / ) = | | f l f - / | | o = | | / ' ' { | | o è ^ l l o 
and as we may take a = \ for ||<J|| x small we obtain 

d0((p,id)^Kd0(g9f) 

for suitable K, proving I implies IV. 

3. Classification of linear automorphisms. We now turn to Problem II 
of §1E for the case & = Laut(/?

w). We retain the notation of §2. Let 
Hyp(/?w) denote the set of all hyperbolic linear automorphisms of Rm; 
note that Hyp(/?w) is open dense inLaut(/T). For feLam(Rm) let 

w± (ƒ) = dim W±(f)9 if ƒ | W±(f) preserves orientation; 

w±(f) = —dim W±(f) otherwise. 

3.1. THEOREM . For f , g e Hyp(/?m) the following are equivalent: 
I. ƒ and g are topologically conjugate; 

II. w+(f) = w+(g) and w (f) = w~(g); 
III. f and g belong to the same component of Hyp(Rm). 

P R O O F . Fo r I implies II note that the numbers w ± ( / ) are topological 
invariants by Lemma 2.2. II implies III is an exercise in linear algebra 
which we leave to the reader. (Hint: use Jordan normal form.) For III 
implies I connect ƒ and g by a curve, use 2.4 (I implies III), and apply 
"cont inuous induction." Note that a corollary of 3.1 is that Hyp(/?m) 
has Am components . (Recall Example 1.5.) 

Wre now at tempt to generalize 3.1 : 
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3.2. DEMITHEOREM .9 Let f,ge Laut(R
m). Then ƒ and g are topologically 

conjugate if and only if w+(/) = w+{g), w~(f) = w~(g), and f0 and g0 

are linearly conjugate. 

Now 3.2 clearly implies: 

3.3. DEMICOROLLARY. Totally nonhyperbolic linear automorphisms are 
topologically conjugate if and only if they are linearly conjugate. 

Note 3.3 has as a special case: 

3.4. CONJECTURE. Periodic linear automorphisms are topologically con­
jugate if and only if they are linearly conjugate. 

Kuiper and I [21] have succeeded in proving 3.2 from 3.4 and we can 
also prove 3.2 under the additional assumption that ƒ and g have no 
periodic points of prime period >3. 

Unfortunately, 3.4 appears to be very difficult, de Rham ([40] and 
[41]) proves a weaker version of 3.4. Note that 3.4 implies the topological 
classification of lens spaces, a problem which was open for at least thirty 
years and solved only recently by the deep work of Kirby and Siebenmann 
[20]. 

We close this section by proving two special cases of the demicorollary; 
the proofs indicate the main ideas in the general case. 

3.5. EXAMPLE . Irrational (i.e. nonperiodic) rotations of R2 are topo­
logically conjugate if and only if they are linearly conjugate. 

PROOF. Let ƒ rotate R2 = C through an irrational angle; 

m = 2-wz 
for zeC where 9 is irrational. For zeC, z / 0, let S be the closure of 
the orbit of z. Then S is a circle and is invariant under ƒ. Moreover, the 
rotation number (see [13]) of ƒ | S is 9. As this number is a topological 
invariant which characterizes ƒ up to linear conjugacy, 3.5 is proved. 

Now let hk e Lüut(R
k) be the automorphism represented by the matrix 

with ones on the diagonal and super diagonal and zeros elsewhere. 
Define ƒ, g G Laut(/?

4) by ƒ = h2 x h2 and g = h3 x hx. Then ƒ and g are 
totally nonhyperbolic (1 is the only eigenvalue) and not linearly conjugate 
as they have different Jordan normal forms. 

3.6. EXAMPLE . ƒ and g are not topologically conjugate. 
PROOF. Let X(f) ç R4 be the set of nonfixed points of/. Then ƒ acts 

freely on X(f) and the orbit space X(f)/f is a topological invariant 
associated to ƒ. We prove 3.6 by showing that X(ƒ)/ƒ is Hausdorff while 
X(g)/g is not. 

9 A demitheorem is an assertion which is almost completely proved and for which there 
is overwhelming evidence of its truth. 
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To do this we examine the orbit structure of hk {k = 2, 3). The h2 orbit 
of a point (x, y) e R2 lies on a line y = constant. This point is fixed if and 
only if y = 0. Thus X(h2)/h2 is a disjoint union of two open cylinders. 

The h3 orbit of a point (x, y, z) e R3 lies on a parabola if z # 0; lies 
on a straight line y = constant and z — 0 if z = 0; and is fixed (i.e. consists 
of a single point) if y = z = 0. The parabola for z # 0 approaches two 
distinct lines (y = ± constant, z = 0) as z tends to 0 with j ; # 0 . This is 
why X(h3)/h3 is not Hausdorff. Using these ideas it is not hard to prove 3.6. 

4. Structural stability on a compact manifold. We now consider 
Problem I of §1E in case 3F = Diff(M) where M is compact. We first 
introduce some notation which will remain in force for the remainder of 
the paper. 

For each r = 0,1,2,..., Cr(TM) will denote the Banachable space of 
C vector fields on M. WTe fix, once and for all, a norm || • ||r on this space. 

WTe shall take a smooth exponental map exp : TM -+ M for M. It may 
be constructed by taking a smooth Riemannian metric on M and setting 
exp(x) = c(l) for x e TM where c : R -• M is the unique geodesic satisfy­
ing c(0) = x. For us, the most important fact about exp is the following: 
Let U be a coordinate patch on M (so we identify U with an open subset 
of Rm\ Then for x = (x,v)eU x Rm = TU, 

(1) exp(x) = x + v + .. . 

where the dots represent terms of higher order. 
Given rj e C°(TM) we define exp(rç) : M -* M by exp(rç) = exp o rj. Thus 

according to (1), exp(rç) is the analog of id + rj in §2. Using (1) and the 
implicit function theorem it is not hard to show for a sufficiently small 
ball B about the origin in C°(TM) that the map 

B n C(TM) - C\M, M):rj-* exp(rç) 

is a homeomorphism onto a neighborhood of the identity in C7(M, M). 
(Indeed, it is a chart on the Banach manifold C\M,M)\ see [31].) 

Now suppose we want to show that ƒ G Diff (M) is structurally stable. 
We choose g close to ƒ in Diff (M) and try to solve for q> in the equation 

(2) go<p = q>of. 

Following Moser [25] we note that f~x°g is close to the identity so 
ƒ _ 1 o g - exp(£) where £ e C^iTM) and \\Ç\\X is small. WTe seek a solution 
q> near the identity q> = exp(rç), where r\eB c C°(TM). Then (2) takes 
the form 

(2') {l - f*)n = Ren) 

where ƒ * is the linear operator on C°(TM) defined by 
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f*r, = Tf-ionof 

for rjeC°(TM) and R4:B-+ C°(TM) has a small Lipschitz constant for 
||{||i small. 

The reader should compare equations (2) and (2') with equations (1) 
and (10 of §2. 

4.1. DEFINITION. Let/eDiff(M). Then ƒ is an Anosov diffenmorphism iff 
the bounded linear operator ƒ * : C°(TM) -+ C°(TM) is hyperbolic. 

4.2. THEOREM (ANOSOV [5]). An Anosov diffeomorphism ƒ is structurally 
stable. 

PROOF (MOSER [25]). As ƒ * is hyperbolic, 1 is not in its spectrum; 
i.e. 1 — ƒ * is invertible. Hence (2') takes the form 

n = {\-f*rlRén), 
and one can proceed as in the proof of 2.3. 

Unfortunately, this proof works only when ƒ is Anosov: 

4.3. THEOREM (MATHER [24]). Let /eDiff(M). Then f is Anosov if and 
only if \ — f * is invertible. 

Anosov diffeomorphisms are relatively rare; many manifolds do not 
even admit one. However, to find solutions of (2'), one does not need to 
invert 1 — ƒ * ; one only needs a continuous linear right inverse J : C°(TM) 
-> C°(TM) to 1 - ƒ #. For if (1 -f#)J = 1, then any solution of 

(3) rj = JRft) 

is also a solution of (2') (but not conversely). By the open mapping theorem, 
a continuous linear operator has a right inverse if and only if it is split 
surjective; i.e. it is surjective and its kernel has a closed complement. This 
leads us to the following 

4.4. CONJECTURE.10 Let /eDiff(M). Then ƒ is structurally stable if and 
and only if 1 — ƒ * is split surjective. 

We shall now try to prove this conjecture. 

4.5. DEFINITION. Let /eDiff(M). A selector for ƒ is a function Q>:N 
-» C°(M,M) where N is a neighborhood of/in (the Banach manifold) 
Diff (M) such that Q>( ƒ ) = id and for g e N we have go(p = (pof where 
q> = <b(g). The selector is absolute iff 

d0(id9<!>(g))SKd0(f,g) 

10 I also conjecture that ƒ is structurally stable if and only if it is absolutely structurally 
stable and that 1 - ƒ # is split surjective if and only if it is surjective. 



1972] TOPOLOGICAL CONJUGACY AND STRUCTURAL STABILITY 941 

for geN, where K is a positive constant and d0 is the C° metric of §1C. 
The selector is differentiable iff it is differentiable as a map of Banach 
manifolds. 

Note that a selector differs from a conjugacy selector (1.11) only in 
that <P(g) need not be a homeomorphism. 

4.6. THEOREM . Let f e Diff(M) where M is compact. Then 
I. (Guckenheimer [12]). Iff admits an absolute selector, then 1 — ƒ * 

is surjective. 
II. (Franks [9]). ƒ admits a differentiable, absolute selector if and only 

if \ — f * is split surjective. 

PROOF. Suppose $ is an absolute selector for/. For Çe&iTM) with 
|| f Id small we may define H{i;)eC0(TM) by 

(4) 0(/oexp(£)) = exp(tf(£)). 

The absoluteness condition becomes 

(5) ||ff«)||o ^ % | | o 

for suitable positive constant k. Equation (2') becomes 

(l-f*)H(t;) = R4(H(l;)). 

Choose £ G ̂ (TM) and a small positive real number t. In the last equa­
tion substitute t£ for £ and divide by t: 

(6) ( i - / # ) r 1 i f ( ^ ) = r % ( / f ( ^ ) ) . 

A careful analysis of R^ (see [12], [25], [45] and compare with equation 
(2) of §2) shows that the right-hand side of (6) tends to — £ as t tends to 0. 
By (5), 

(7) U r s o l i c ^fe|«||o-
As Cl{TM) is dense in C°(TM) this shows that the image under 1 — ƒ # 

of the ball of radius k in C°(TM) is dense in the unit ball of C°(TM). 
By a suitable formulation of the open mapping principle (see [23]) it 
follows that 1 — ƒ * is surjective proving I. 

For the "only if" direction of II note that H is differentiable if <D is. 
Thus for £ G C\TM\ J£ = - l i m ^ 0 *~ 1H{tQ exists, and by (6) it satisfies 
(1 - ƒ *)JÇ = {. By (7), ||/{Ho ^ /c||£||0 so that J extends uniquely to 
C°(TM). We have constructed a right inverse J to 1 — f* as required. 

For the "if" direction of II let J be a right inverse to 1 — f*. For 
£ G C^TM) with ||^li small let q = #(£) G C°(TM) be the unique solution 
of (3) (by the Banach contraction principle 2.5). As in the proof of 2.4 
we have || JR^(0)\\o ^ c||£||0 so that (5) holds. Now rj = H(Ç) is the unique 
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solution of G(£, rj) = 0 where G(£, rj) = rj - JR${rj) is a C1 function of 
(t;,rj) defined on a neighborhood of 0 of the Banach space Cl{TM) 
x C°(TM) and with values in C°{TM). As G(0,0) = 0 and D2G(0,0) = 1, 
the equation G(£, rç) = 0 may be solved for rj = H(Ç) by the implicit 
function theorem. Hence H(Ç) is a C1 function of £. It now follows that 
O defined by (4) is a differentiable, absolute selector for ƒ. This completes 
our proof. For more details see [9] and [12]. 

The last argument fails to prove structural stability because the selector 
$ need not be a conjugacy selector. Now the O constructed above 
depends on the choice of the right inverse J. Example 1.8 shows that O 
will not be a conjugacy selector if J is badly chosen. Does a good choice 
of J exist? 

4.7. DEFINITION [45]. Let ƒ e Diff (M). Then ƒ is infinitesimally stable iff 
there exists a right inverse J to 1 - ƒ # such tha t . . . . 

The dots represent a technical condition which assures that the selector 
O constructed from J is in fact a conjugacy selector. Happily this condition 
is often satisfied. 

4.8. THEOREM. Let f e Diff(M) where M is compact arid suppose f is C2. 
Then ƒ is absolutely structurally stable if and only if f is infinitesimally 
stable. 

The reader should compare 4.8 and 4.4. We shall elaborate on 4.8 in 
§9 (Theorem 9.2). 

5. The adjoint representation. Let G be a Lie group and 0 be its Lie 
algebra. One can think of ^ as the tangent space to G at the identity. 
Thus if ht e G (t e R) is a curve with h0 = identity, then the tangent vector 
rj to this curve at time t = 0 is an element of 0 and every element of 0 
may be so obtained. 

Let ƒ e G. Then ƒ determines an inner automorphism Ad(/): G -+ G 
by Ad(f)(h) = fhf'1 for heG. Denote by ad ( / ) : ^ ->0 the tangent of 
Ad( ƒ ) at the identity. Thus if rj is the tangent vector to /Ï, at t = 0, then 
ad(/>f is the tangent vector to fhtf~

l at t = 0. We thus obtain a re­
presentation ad : G -* Laut(^) of G on ^. This is called the adjoint 
representation of G and is the fundamental representation of Lie group 
theory. 

Now let M be a compact manifold. Its diffeomorphism group Diff (M) 
has many of the properties of a Lie group: It is a group and a Banach 
manifold. It is not an infinite dimensional Lie group because the group 
operations are not differentiable (but they are continuous). 

To find the Lie algebra of Diff (M) choose a curve ht s Diff (M) with 
h0 = identity and differentiate at t = 0: 
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(1) flix) = (d/dt)ht(x)\t = 0 

for xeM. Clearly rj(x) e 7̂ M for xeM which means that rj is a vector 
field on M. If \ is the flow of rj e C^iTM) then (1) holds. This suggests 
that the Lie algebra of Diff(M) should be C^TM). (If we replace C1 by 
C00 we actually get a Lie algebra closed under Lie brackets.) 

An ƒ e Diff (M) determines an inner automorphism Ad(/) by Ad(/ )h 
= fohof~1{orhe Diff (M). If ht satisfies (1) then 

(2) (d/dt)Ad(f)ht\t=0 = Tforjof-\ 

The right-hand side makes sense for any vector field r\, C1 or not. Thus 
we make the following 

5.1. DEFINITION.11 Let ƒ G Diff(M) where M is a compact smooth mani­
fold. The adjoint representation off is the linear operator ad(/) :C°(TM) 
-• C°(TM) given by 

*d(f)ri = Tfonof-i 

for Y\ G C°(TM). 

One easily verifies that ad(/) is a representation: ad(/o g) = ad(/)ad(#), 
ad(id) = 1, and ad(/_ 1) = ad(Z)-1 for/,0GDiff(M). In fact, if/,£,rç are 
sufficiently smooth we also have ad(ƒ) [£, rj] = [ad(ƒ)^, ad(ƒ )r(\. 

Note that for ƒ G Diff (M), ad(/_ 1) = ad(/)_ 1 = / # , where ƒ * is the 
operator defined in §4. Thus the fundamental representation in the theory 
of dynamical systems is the analog of the fundamental representation of 
Lie group theory. 

I cannot resist a brief digression to illustrate an application of adjoint 
representation to ergodic theory. Let M be a compact smooth manifold, 
œ a smooth volume on M, and suppose ƒ G Diff (M) preserves œ:f*œ = œ. 
We denote by Hr(TM) the Sobolev space of vector fields having r 
derivatives in L2. Similarly let Hr(T*M) denote the Sobolev space of W 
one-forms on M and Hr(M) denote the Sobolev space of W real-valued 
functions on M. Note that the exterior derivative d maps Hr(M) to 
Hr~\T*M) and that ad(/) is a bounded linear operator on H\TM) if 
/ i s C r + 1 . 

5.2. DEFINITION, ƒ is ergodic iff for all qeH°(M) the equation ƒ *g = q 
implies q is constant. 

5.3. DEFINITION, ƒ is infinitesimally ergodic iff the operator 1 — ad(/): 
H\TM) -> H\TM) has dense range. 

5.4. THEOREM. If f is infinitesimally ergodic, then f is ergodic. 

11 This definition was told to me by Franks. 
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PROOF. Given a vector field rj and a one-form a define a real number 
<a, i/> by 

<a,rç> = a(x)̂ (x)co(x). 
JjceM 

This pairing determines the dual of Hr(TM): H\TMf = H~r(T*M). As 
ƒ*co = co the change of variables formula shows that <a, ad(/>/> 
= </*a,rç>, where ƒ* is the induced operator on forms. Suppose 

f*q = g. Then dq = d/*g = f*dq so 

(l-ad(/))*dg = ( l - / * ) d « = 0. 

As 1 — ad(/) has dense range, (1 — ad(/))* has no kernel. Thus dq = 0 
so q is constant. This proves 5.4. 

We recall that (see 4.1) ƒ is Anosov if and only if ad(/) is hyperbolic 
on C°(TM); i.e. X - ad(/) : C°(TM) - C°(TM) is an isomorphism for all 
k e C with |A| = 1. The spaces H\TM) and C°(TM) do not seem to be 
too different. Thus we have 

5.5. CONJECTURE. If / is Anosov, then ƒ is infinitesimally ergodic. 

If true, the conjecture would imply a difficult theorem of Anosov: C2 

Anosov diffeomorphisms are ergodic (see [5]). 
The conjecture is necessarily very delicate as Moser pointed out to me. 

For, let ƒ be a hyperbolic toral diffeomorphism (Example 1.9 of §1). Then 
using Fourier series one can show that 1 — ad( ƒ ) : Hr(TM) -• Hr(TM) is 
an isomorphism for r < 1, has dense range for r = 1, and does not have 
dense range for r > 1. (r is here a real number.) 

6. Hyperbolic sets. Let ƒ G Diff(M) and A ç M . Let TM \ A -> A 
denote the restriction of the tangent bundle TM -* M to A and let 
C°(TM | A) denote the space of continuous sections of this restricted 
bundle. When A is compact, C°(TM | A) is a Banachable space and the 
restriction map C°(TM) -> C°(TM \ A) is surjective (section extension 
theorem). Wrhen A is /-invariant (i.e. /(A) = A) the adjoint operator 
ad(/): C°(TM) -> C°(TM) has a natural restriction ad(/, A): C°(TM | A) 
-» C°(TM | A) given by 

ad(/,A)f/ = T / o ^ o / - i 

for Y\ G C°(TM | A). 
6.1. DEFINITION. Let/eDiff(M). A compact,/-invariant subset A ç M 

is called hyperbolic (for/) iff the continuous linear operator ad(/,A): 
C°(TM | A) - C°(TM | A) is hyperbolic. 

Thus ad(/) = ad(/, M). As ƒ * = ad( / ) - 1 is hyperbolic if and only if 
ad(/) is hyperbolic we see that ƒ is an Anosov diffeomorphism (see 4.1) 
if and only if M is a hyperbolic invariant set of/. 
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The following remarkable observation is due to Mather [24] ; Theorem 
4.3 is an easy corollary of it. 

6.2. THEOREM. Let f e Diff(M) and A Ç M be compact and f-invariant. 
Suppose the nonperiodic points off in A are dense in A. Then the spectrum 
of ad( ƒ, A) is invariant under rotations of the complex plane. In particular, 
A is hyperbolic if and only ifl — ad(/, A) is bijective. 

We now give an older, geometric definition of "hyperbolic invariant 
set"; the equivalence of these two definitions is due to Mather [24]. 

Let X be a compact Hausdorff space and E -> X a vector bundle over 
X. Let C°(X) denote the ring of continuous, real-valued functions on X 
and let C°(E) denote the Banachable space of sections of E -• X. Thus 
C°(E) is a C°(X)-module. 

6.3. LEMMA. The correspondence which sends a vector bundle splitting 
E = £ + © E" to the corresponding splitting C°(E) = C°(E+) © C°(E~) of 
C°(X)-modules is bijective. 

This lemma is essentially the content of Swan's theorem [53] to the 
effect that topological X-theory is a special case of algebraic X-theory. 
To prove it one notes that splittings correspond to projections and that 
the C°(X)-algebras C°(Hom(£, £)) and Hom(C°(E), C°(E)) are naturally 
isomorphic (see for example p. 26 of [19]). 

Now let £ be a Banach space and F a continuous linear automorphism 
of E. Then F is hyperbolic if and only if there exists a closed, F-invariant 
splitting E = E+ © E~ oï E and constants c > 0 and 0 < r < 1 such 
that for n ^ 0 

(1 + ) \\Fnrj\\ S cr«\\n\\ {ovrjeE+; 

and 

(1-) | |^"^| | ^ cr"|M| ïorrjeE'. 

This fact is a generalization of Lemma 2.2 and is proved in any textbook 
on linear functional analysis. 

Now take E = C°(TM | A) and F = ad(ƒ, A) where A is compact and 
/-invariant. Suppose M has a Riemannian metric so that a norm || • ||0

 o n 

C°(TM|A) is determined by |M|0 = sup,6A ||IJ(X)|| for rjeC°(TM\A). 
If A is hyperbolic, we see from (1±) that the subspaces E+ and E~ are 
C°pO-modules. Hence by 6.3 the splitting C°(TM | A) = E+ © E~ comes 
from a vector bundle splitting TM \ A = E+ © E~ where E± = C 0 ^ 1 ) . 
This proves the following 

6.4. THEOREM. A compact, f-invariant set A is hyperbolic if and only 
if there exists an f-invariant splitting of vector bundles TM \ A = E+ © E~ 
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and constants c > 0 and 0 < r < 1 such that for n ^ 0 

\\Tfnx\\ ^crn\\x\\ forxeE+; 

and 

\\Tf-nx\\ Scrn\\x\\ forxeE~. 

From Theorem 6.4 we easily see that a compact, /-invariant subset of 
a hyperbolic set is hyperbolic. 

A very important example of a compact, /-invariant set is a periodic 
orbit 

A = {x,/(x),/2(x),...,/"-1(x)} 

where ƒ n(x) — x. The reader can easily show that this A is hyperbolic 
if and only if the linear automorphism Txf

n : TXM -• TyM is hyperbolic. 
Moreover, if n is the prime period (i.e. ƒ\x) / x for 0 < k < n\ then the 
spectrum of ad(ƒ, A) is the set of all complex numbers A such that Xn is 
an eigenvalue of Txf

n. 

7. Axiom A. Let ƒ e Diff (M). The nonwandering set of ƒ is denoted by 
Q( ƒ ) and is defined to be the set of all x e M such that for every neighbor­
hood U of x there exists an integer n ^ 0 such that fn(U)nU = 0 . 

The set of periodic points of ƒ is denoted by P(f) (so that x e P(f) iff 
there exists n # 0 with fn(x) = x) and P(f) shall denote the closure of 
P{f). Note that Q(/) and P(f) are closed and /-invariant and that 
P(f) s Q(/). If M is compact, Q(/) # 0 . 

7.1. DEFINITION. Let ƒ G Diff(M) where M is compact. Then ƒ is Q-hyper­
bolic iff Q( ƒ ) is a hyperbolic invariant set for ƒ ; ƒ is P-hyperbolic iff each 
periodic orbit off is hyperbolic; ƒ satisfies axiom A iff/is Q-hyperbolic 
and F(f) = Q(/); ƒ satisfies wea/c axiom A iff ƒ is P-hyperbolic and 
p(f) = «(ƒ)• 

(The definition of axiom A is due to Smale [51].) 

Two reasonable (and related) conjectures are: 
(i) If/is Q-hyperbolic, then P(f) = Q(/). 
(ii) If/ is Anosov, then Q(/) = M. 

Some progress on these questions has been made by Newhouse and 
Palis ([27], [28], and [29]). 

The following theorem is due to the combined work of Kupka, Smale, 
Peixoto, and Pugh. (See [3], [22], [35], [37], [38], and [50].) 

7.2. THEOREM. Weak axiom A is a generic property12 on Diff(M). 
12 A property is called generic on Diff(M) iff it is true on a residual subset of Diff(M). 

A residual subset is a countable intersection of open dense sets and is thus dense (Baire 
category theorem). Thus a generic property holds on a dense subset of DifF(M). 



1972] TOPOLOGICAL CONJUGACY AND STRUCTURAL STABILITY 947 

7.3. COROLLARY.13 A structurally stable diffeomorphism satisfies weak 
axiom A. 

In contrast to 7.2 we have 
7.4. EXAMPLE [0]. There is an open subset N of Diff(M) where 

M = T2 x S2 such that no ƒ G AT satisfies axiom A. 
Note that when P = Q, Q-hyperbolicity is a kind of uniform P-hyper-

bolicity; it says that the hyperbolic structures on the periodic orbits 
extend continuously to Q. This prompts the following 

7.5. CONJECTURE. A structurally stable diffeomorphism satisfies axiom A. 

7.6. DEFINITION. Let ƒ G Diff(M). The essential spectrum of/ is the closure 
of the set (J spec(ad( ƒ, A)) where the union is over all periodic orbits A 
of/and spec(ad(/, A)) denotes the spectrum (in this case, the set of eigen­
values) of the finite dimensional linear operator ad(/, A) : C°(TM j A) 
-• C°(TM | A). 

It is not hard to see that (when M is compact) the essential spectrum 
of/is a subset of the spectrum of ad(/, P(f)). 

7.7. CONJECTURE.14 The essential spectrum of/ is the spectrum of 
ad(/,P(/)). 

7.8. THEOREM (FRANKS [8]). Iff is structurally stable, then the essential 
spectrum off contains no complex number of modulus one. 

Thus 7.7 (for structurally stable ƒ) together with 7.8 and 7.3 would 
imply 7.5. 

8. Transversality. Let ƒ G Diff(M) where M is compact. We give M a 
Riemannian metric which determines a metric d on M, but all the defini­
tions of this section are easily seen to be independent of the metric (by 
compactness arguments). 

Define E±(f) = E± Ç TM by 

E+ = {XETM\ lim \\Tfnx\\ = 0}, 
n-*oo 

E~ ={xeTM\ lim \\Tf-nx\\ = 0 } ; 
« - • 0 0 

and for xeM let E± = E± n TXM. In case A is a hyperbolic invariant 
set the notation E± | A agrees with that of Theorem 6.4 but, in general, 
E+ and E~ are not subbundles of TM (see Example 1.8). Note, however, 

13 7.3 is an easy but not obvious consequence of 7.2. The proof requires the stable-unstable 
manifold theory described in §8. It is easy to see that 7.2 implies that P = Q for a structurally 
stable diffeomorphism as this property is topologically invariant. P-hyperbolicity is not a 
topologically invariant property. 

14 Due independently to Abraham and Shub. 
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that Ex and Ex are vector subspaces of TXM for x G M. 

8.1. DEFINITION. Let /eDiff(M) where M is compact. Then ƒ satisfies 
the strong transversality condition iff TXM = Ex + E~ for all x e M where 
the sum need not be direct. 

A motivation of this definition requires a brief excursion into stable 
manifold theory. For A ç M (not necessarily invariant) define W±(A, ƒ) 
= W±(A) C M by 

W+(A) = {ye M | lim d( ƒ "(y), ƒ» (A)) = 0}, 
« - • o o 

W~(A) = {yeM | lim d(/-"(y),/""(A)) = 0}. 
w-*oo 

Then W+(A) is called the in-set of A (for ƒ) and W~(A) is called the 
out-set of A. When A is a point, A = {x}, we denote W±(A) by W±(x). 
Traditionally, W+(x) and W~(x) are called respectively the stable and 
unstable manifolds of x and are denoted by Ws(x) and W^M(x). The simpler 
terminology is due to Zeeman. 

Note that the sets W+(x) partition M:xe W+(x) and W+(x) n W+(y) 
^ 0 if and only if W+(x) = W+(y). Similarly for W~. 

The following is a generalization of a classical theorem (see [13], [18], 
and [44] for example) in case A is a fixed point of/: 

8.2. THEOREM [16]. Let A be a compact hyperbolic invariant set of 
/eDiff(M) and let xeA. Suppose ƒ is C (r ^ 1). Then W±{x) are C 
injectively immersed cells and f or y G W±(X\ E^ = TyW

±(x). 

8.3. DEFINITION. Let ƒ G Diff(M) and A ^ M. Then A is in-phase (for ƒ) 
i f f^±(A)=U,eA^ ± W-

A hyperbolic invariant set need not be in-phase (see [17]), but 

8.4. THEOREM [17]. Iff s Diff(M) satisfies axiom A, then Q(/) is in-phase. 

Now, it is always true that W+(Q) = W~(Q) = M when M is compact. 
Hence by 8.2 and 8.4 we see that if/satisfies axiom A, then ƒ satisfies the 
strong transversality condition iff for all x,yeQ(f), W+(x) and W~(y) 
intersect transver sally (see [3]). 

A diffeomorphism ƒ G Diff(M) satisfies the weak transversality condition 
iff W+(x) and W~(y) intersect transversally for all (hyperbolic) periodic 
points x and y. According to the theorem of Kupka-Smale, the weak 
transversality condition is a generic property (see [3], [22], [35], and 
[50]). In contrast, Smale [49] gives an example of an open set N ç Diff (M) 
such that every ƒ G N satisfies axiom A and no feN satisfies the strong 
transversality condition. Also no feN is structurally stable. Shub [48] 
proves, however, that the structurally stable systems are dense in the 
C°-topology, 
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The following theorem ties together a great many diverse ideas: 

8.5. THEOREM. Let /eDiff(M) where M is compact and suppose f 
satisfies weak axiom A. Then 1 — ad(/) is surjective if and only if f satisfies 
axiom A and the strong transversality condition. 

PROOF. The "if" direction is proved in [45]; we shall prove "only if". 
Assume 1 — ad(/) is surjective. 

By the section extension theorem, 1 — ad(ƒ, Q) is surjective. By weak 
axiom A, 1 — ad(ƒ, Q) is injective. Thus 1 — ad(ƒ, Q) is bijective and by 
a version of 6.2 (see [9]) it follows that ad(ƒ, Q) is hyperbolic and hence 
that ƒ satisfies axiom A. 

Suppose ƒ does not satisfy the strong transversality condition; we will 
prove a contradiction. Then there exists xeM with 

(1) E: + E- * TXM. 

As ƒ is Q-hyperbolic, x 4 ̂ ( ƒ )• Thus there exists a neighborhood U of x 
with f\U) n U = 0 for all n * 0. Choose Ce C°(TM) supported in U 
with 

(2) C(X)4E: +E-X 

(possible by (1)). Then Ç(fn(x)) = 0 for n ¥= 0. Note also that Ç | Q = 0. 
As 1 — ad(/) is surjective, there exists Y\ E C°(TM) with 

(3) (1 - ad(/)>7 = C 

Then n 

( l - a d ( / ) " + 1 > / = £ad(/)*Ç, 
k = 0 

and as ad(ƒ)kÇ(x) = 0 for k # 0 we obtain rj(x) - Tfn+1r\{f-n-\x)) 
= C(x) or 
(4) TT""'foto - CM) = riif-"-^)). 

As n -^ cc,f~n~1(x)^Q. Restricting (3) to Q and using Q-hyperbolicity 
and the fact that Ç | Q = 0 gives that rj \ Q = 0. Thus from (4) we obtain 

(5) i/(x)-C(*)e£J. 

Similarly, 

(1 - ad(/)"> = - £ ad(/)-kC 
fe=i 

so rj(x) - Tf~nY\{fn{x)) = 0, so TJf"fj(x) = rj(fn(x)) -+ 0 as n -+ oo, so 

(6) ti(x)eEÎ. 

Substract (5) from (6) to obtain f(x)ejE^ + E~, which contradicts (2). 

9. The characterization theorem. Smale ([53]; see also [34]) has 
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proposed the following solution for Problem I of §1 E: 

9.1. CONJECTURE. A diffeomorphism is structurally stable if and only if 
it satisfies axiom A and the strong transversality condition. 

This conjecture is proved in [34] for the special case where Q is finite. 
The general case is as yet unsolved, the only obstacle being conjecture 7.5. 
For the case of absolute structural stability, the situation is better: 

9.2. THEOREM. Let /eDiff(M) where M is compact and suppose15 that 
fis C2. Then the following are equivalent: 

I. f satisfies axiom A and the strong transversality condition; 
IL fis infinitesimally stable; 

III. fis absolutely structurally stable; 
IV. fis structurally stable and 1 — ad(/) is surjective. 

I implies II implies III is proved in [45] (except that III is replaced 
by strong structural stability); the introduction to [45] gives a sketch of 
the proof. Refer also to §4 for the idea of II implies III. Ill implies IV 
follows from 4.6 and IV implies I follows from 7.3 and 8.5. 

Condition IV seems to say that "ƒ is structurally stable and this can be 
proved using the implicit function theorem." Thus if Conjecture 9.1 is 
false one will have to construct a structurally stable diffeomorphism and 
prove its stability by an argument more general than the contraction 
mapping principle. 

Clearly Conjecture 9.1 follows from Conjecture 7.5 and Theorem 9.2. 
As explained in §7, Conjecture 7.5 follows from Conjecture 7.7; thus 9.1 
looks very plausible and hence also the equivalence of the various con­
cepts of structural stability (1.6, 1.10 and 1.12). 

I am interested in the question of whether 1 - ad( ƒ ) surjective implies 
axiom A. An affirmative answer would strengthen Theorem 8.5 and also 
prove a version of Conjecture 4.4. It would enable us to "drop to dots" 
in the definition of infinitesimal stability (see 4.7). 

Finally I should like to say that the classification problem (Problem II 
of §1 E) for structurally stable diffeomorphisms does not appear to me to 
be hopeless. The work of Bowen and Williams cited in the bibliography 
goes a long way towards describing Q(ƒ) for an axiom A diffeomorphism. 
The work of Franks, Hirsch, and Shub (among others) bears strongly on 
Problem II for Anosov diffeomorphisms (see [10], [11], [15], [46], and 
[47]). The labeled diagrams of Smale [51] suggest a first step in attacking 
Problem II in the case of structurally stable systems with finite non wander­
ing set (Morse-Smale systems); see Palis [33]. 

15 As pointed out in [45] this condition can probably be dropped; in fact, Wellington 
Melo [59] has already succeeded in doing this in case M is two-dimensional. 
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