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Call a ring A absolutely torsion-free (ATF) if for every finite kernel 
functor <x, i.e. a topologizing filter of nonzero left ideals, cr(A) = 0. In this 
article we note the basic properties of ATF rings, and give some related 
results about hereditary noetherian prime rings. The notation and termi­
nology to be used are that of Goldman [1]. In particular, if A is a ring, 
K(A) (respectively 1(A)) will denote the set of kernel functors (respectively 
idempotent kernel functors) of A. 

1. Absolutely torsion-free rings. We first note that ATF rings are a 
generalization of the familiar concept of integral domain. 

PROPOSITION 1.1. Let R be a commutative ring. Then R is an integral 
domain if and only if for every a e K(R), a # oo => cr(R) = 0. 

The partial ordering on K(A) provides a useful description of ATF rings. 

PROPOSITION 1.2 A is A TF if and only if there is fie /(A), \x # oo, such 
that for all oo # a e K(A\ a ^ \x. 

A definition is required in order to free the concept of ATF ring from 
that of kernel functor. A submodule M of a module N is called a weakly 
essential submodule if for any finite subset xl9...,xnciN9 there is 0 ^ r G A 
such that rxt e M for each i. We then have 

THEOREM 1.3. A is A TF if and only if every weakly essential left ideal 
of A is a rational left ideal 

We note some elementary properties of ATF rings. 

PROPOSITION 1.4. If A is ATF then A is a prime ring, i.e. the product of 
nonzero ideals of Ais nonzero. Furthermore, if Ris the center of\ then R 
is an integral domain and A is a torsion-free R-module. 

The converse of the first part of the preceding proposition is false. 
For if k is a field, V an infinite-dimensional vector space over fe, and 
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A = Homk(F, V\ then A is more than just a prime ring; it is in fact prim­
itive. But A is not ATF. 

Under certain circumstances however, prime rings are ATF. The first 
is that the ring be "almost" commutative. 

PROPOSITION 1.5. Let Abe a ring which is finitely generated as a module 
over its center R. Then A is ATF if and only if A is a prime ring. 

The next instance is somewhat more interesting. 

THEOREM 1.6. Let A be a left Goldie ring. Then A is ATF if and only if 
A is a prime ring. 

Some examples of ATF rings are the following: 
(a) If A has no zero divisors, then A is ATF. 
(b) If A is a simple ring, then A is ATF. 
(c) If A satisfies the d.c.c. on either side, then A is ATF if and only if A 

is simple. 
(d) Let k be a field, and let A be the polynomial ring over k in two 

noncommuting indeterminates, x and y, subject to the relations x2 = y2 

= 0. Then A is noetherian and prime, so by Theorem 1.6 is ATF. 
We now turn to the question of obtaining new ATF rings from a given 

one. The next theorem leads to an important method. 

THEOREM 1.7. Let A and F be rings, and suppose that the category of (left) 
A-modules is equivalent to the category of (left) F-modules. Then K(A) 
« K(T) as partially ordered sets. 

COROLLARY 1.8. If A is ATF, and T = Mn(A), then x n matrix ring with 
entries in A, then T is ATF. 

The formation of polynomial rings preserves our condition. 

THEOREM 1.9. Let A be ATF, and let Y = A[x], i.e. we adjoin to A a 
central nonzero-divisor, nonunit x. Then T is ATF. 

This theorem is proved by considering the connection between a left 
ideal of T and the left ideal of A consisting of its "leading coefficients." 

Any ring between an ATF ring and its maximal ring of quotients (see 
Utumi [3]) is also ATF. 

THEOREM 1.10. Let A be an ATF ring, and let Q be its maximal ring of 
(left) quotients. IfT is a ring such that A £ T Ç Q, then F is ATF. 

Rather unexpectedly perhaps, there is a manner in which ATF rings 
fail to arise, namely from taking subrings. Let A be the ring of 2 x 2 lower 
triangular matrices over a field k. Then the maximal ring of quotients of 
A is M2(k), the full 2 x 2 matrix ring. But M2(k) is ATF while A, which 
has a nilpotent ideal, is not. 
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2. The maximal ring of quotients of an ATF ring. 

THEOREM 2.1. Let A be an ATF ring, and Q its maximal left ring of 
quotients. Then Q is simple, von Neumann regular, and selfinjective. Further­
more Q satisfies the d.c.c. if and only if A is (Goldie) finite dimensional as a 
left A-module. 

The only part of this theorem that is not well known is the simplicity 
of Q in the absence of any finiteness condition. It is shown that for any 
0 ît I, a two-sided ideal of Q, Q is contained in a finite direct sum of copies 
of/. The selfinjectivity of Q then yields that Q = /. 

3. Hereditary noetherian prime rings. We wish to show that every ring 
between an hereditary noetherian prime ring (HNP) and its maximal ring 
of quotients is itself HNP and a ring of quotients of the given HNP ring. 
We first note the following theorem. 

THEOREM 3.1. Let f:A-+T be an epimorphism of rings. If f induces on 
r the structure of a flat right A-module, then there is a fie 1(A) such that 
r * e„(A). 

THEOREM 3.2. Let A be an HNP ring and Q its maximal ring of quotients. 
Let T be a ring such that A Ç T ç g* Then there is a fie 1(A) such that 
r * e,(A). 

The crux of the proof of this theorem is Silver's characterization of an 
epimorphism of rings (see [2, Proposition 1.1]). 

THEOREM 3.3. Let a G 1(A), and suppose A c Qff(A); i.e. a(A) = 0. Let x 
be a left ideal of Qa(A), and let a = A n x. Then if a is a finitely generated 
projective A-module, x is a finitely generated projective Qff(A)-module. 

Here the result follows from the fact that Q„(A) is (T-injective and that 
extensions are unique. 

The preceding theorems and various results from §1 yield 

THEOREM 3.4. Let A be an HNP ring, with maximal ring of quotients Q. 
If T is a ring with A e r e g , then T is HNP. 
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