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1. Using variational techniques we have found conditions which insure 
the existence of trajectories to conservative dynamical systems which wind 
around singularities of the potential and are of the following four types: 
(la) periodic trajectories cutting arbitrary small neighborhoods of the 
singularities; (lb) periodic trajectories having arbitrary given period; (2a) 
trajectories joining two fixed points and cutting arbitrarily small neighbor­
hoods of the singularities; (2b) trajectories joining two fixed points with 
arbitrary given time of transit. 

The trajectories are obtained as paths at which certain functionals 
attain extreme values. These functionals satisfy the Palais-Smale condition, 
and the trajectories are computable by the Ritz method. At present we 
must impose a certain condition on the potential which excludes the 
gravitational case, and the P-S condition is definitely not satisfied by these 
functionals in this case. Moreover, our theorems provide for the existence 
of trajectories of a type which cannot occur in the gravitational case. 

On the other hand, our theorems apply to planar n-body systems 
consisting of particles which attract each other with forces that are 
(roughly) inverse cube or stronger in a neighborhood of each particle. 
Hence, e.g., we obtain periodic solutions to such systems which are very 
complicated but have arbitrarily long or short periods. 

2. Consider the dynamical equation 

(1) 3c + W(x) = 0, 

where x = (x1 , . . . , xN) denotes a general point of RN and V = V(x) is a 
real valued function on RN with gradient VK It is assumed that V is of 
class C2 everywhere on RN except at a nonempty closed set of points S at 
which V has infinitely deep wells; i.e., we suppose that V(x) -> -oo as 
x -> S. We shall at times assume one or more of the following conditions. 
(The first condition is always assumed, and this is the condition which 
excludes the gravitational case. See §4.) 
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[A] There exists a C2 function U which is defined on some open neighbor­
hood N ofS, has infinitely deep wells at S, and satisfies 

(2) - V(x) £ |VC/(x)|2 for all xinN - S. 

[B] For each p in dS, (x — p) • W(x) > 0 for all x sufficiently close to 
p and not in S. 

[C] V is bounded above; say, V ^ 0. 
If these conditions are fullfilled, then any cycle (= smooth closed curve) 

or path joining two fixed endpoints in RN — S can be continuously de­
formed into a solution of (1), provided that the cycle or path winds around 
S in a sufficiently complicated way. Specifically, we have the following 
definitions: 

DEFINITION 1. A cycle y in RN — S will be said to be tied to S if y cannot 
be continuously moved off to infinity without either crossing S or having 
its arc length become infinite. (See below for examples.) 

DEFINITION 2. A path y joining two fixed points p, q in RN — S will be 
said to be (topologically) simple if p = q and y is homotopic in RN - S 
to a point, or if p # q and y belongs to the homotopy class of paths in 
RN — S which contains the line segment pq. (This homotopy class will be 
understood to be empty if pq intersects S.) 

We can now state our principal existence theorems. 
[la] Assuming [A] and [B], and given any e > 0, then any cycle y which 

is tied to S can be continuously deformed into a periodic solution of (I) which 
at some points comes to within an s-distance ofS; moreover, y does not cross 
S during the deformation. I.e., y is homotopic in RN — S to an infinite number 
of periodic solutions to (1) which cut arbitrarily small neighborhoods of S. 

[lb] Assuming [A] and [C], and given any X > 0, then any cycle y which 
is tied to S is homotopic in RN — S to a k-periodic solution of (I). 

[2a] Assuming [A] and [B], then every smooth nonsimple path y joining 
two fixed points p,qis homotopic inRN — S to an infinite number of solutions 
of (I) which join p to q and cut arbitrarily small neighborhoods of S. 

[2b] Assuming [A] and [C], and given any tt > 0, then every smooth 
nonsimple path y joining p to q is homotopic in RN — S to a solution of (I) 
which joins p to q in time tt. 

EXAMPLES, (i) Let N = 2 and let S be a discrete set of points. In this 
particular case a cycle is tied to S if and only if it is not homotopic (in 
R2 — S) to a point; but this is not a general fact as the following example 
will show. 

(ii) Let N = 3 and let S be the union of two intersecting lines. A cycle 
is tied to S if and only if it winds around both of the lines. A cycle which 
winds around only one of the lines is not tied to S. 

(iii) Let there be three masses mt with position coordinates (xh yt) con-
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strained to move in the plane -R2, so that the configuration space of the 
system is R6. We suppose that each mass attracts every mass along the 
lines joining them Reduce the dimension of the configuration space from 
six to four by fixing the centroid at the origin. The singularities of the 
system correspond to collisions of the masses, and these are defined by 
the three coincidence relations Pt: {xj = xk and y} = yk}9 where the triple 
{ij,k} varies over the cyclic permutations of {1,2,3}. Hence the con­
figuration space of the reduced system with the singularities removed is 
R4 — S where S is the union of the three 2-planes Pt. Any pair of these 
planes intersect at precisely one point (the origin). A cycle y is tied to S if 
and only if it winds around at least two of the planes. The property of 
winding around the plane Pt can be defined by the nonvanishing of the 
period ĵ cty where a>f is the closed but nonexact differential 1-foim which 
corresponds to an infinitesimal rotation around the plane Pt. (Similar 
remarks apply to planar n-body systems, n > 3.) 

3. Sketch of proofs. Our discussion will be confined to the periodic 
cases [la], [lb]. For any cycle y given in euclidean coordinates by 
x = x{t\ let J(y) = ^\x(t)\2 àt, E(y) = $V(x(t)) dt and L(y) = J(y) - £(y), 
where the integrations are taken over a period Fix a number X > 0, and 
let H1 denote the Sobolev space of all absolutely continuous i-periodic 
cycles y in RN for which J(y) < oo. An admissible norm for H1 is given 
by || • IK where ||y||? = \\x{tf dt + \\x{tf dt. (See [5] for details and 
references.) The space of all A-periodic cycles y in RN — S of class H1 will 
be denoted by M, and for c > 0 we set Mc = M nJ~ 1(c). 

Let X be a smooth Riemannian manifold which is possibly infinite 
dimensional. Recall that a C1 function ƒ on X which is bounded above 
(below) is said to satisfy the P-S condition (often referred to as "Condition 
C") if every subset of X on which ƒ is bounded and | V/1 is not bounded 
away from zero contains a critical point of/in its closure. It is known that 
the Morse and Lusternik-Schnirelman critical point theories can be 
applied to functions satisfying this condition provided that X is complete; 
in particular, such functions attain absolute maximum (minimum) values 
on each component of X ([7], [8]). If X is not complete, the following 
condition is required for the theory to hold [8, p. 208]. 

[D] For every real number a, ƒ _1[a, oo) (ƒ -1(— oo, a]) is complete. 
The proofs of statements [la] and [lb] consist in showing that the 

functionals E\MC and L\M satisfy the P-S condition, and the solutions 
obtained are cycles at which these functionals attain maximum and 
minimum values resp. (Thus, in the case [lb] we prove a strong form of 
Hamilton's Principle.) The manifolds Mc and M are not complete because 
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of the existence of "holes" in the underlying configuration space RN - S, 
and the crucial part of the proofs is to render this lack of completeness 
ignorable; i.e. we show assumption [A] implies property [D]. (For an 
account of how this is done see [6].) 

The device of exhibiting solutions of (1) as extremals for E\MC is due to 
M. S. Berger [1], [2], [3] and has been used by him and the author [5] 
to obtain information concerning the existence of periodic solutions to 
conservative systems with convex potentials. When written out in coor­
dinates the relation 0{E\MC) = 0 becomes jj,x{t) + VK(x(t)) = 0, where \i 
is a Lagrange multiplier. If \i > 0, this relation reduces to (1) after the 
change of scale t -+ tjji, and it turns out that [B] insures that \i > 0. In 
particular cases we can often dispense with this assumption (cf. [6]). 

Let y be a A-periodic cycle which winds around S. From an elementary 
application of the Schwarz inequality we get the relation arc length (y) 
<; (2U(y))1/2. Therefore decreasing J(y) has the effect of tightening the 
loops of y around S. This is how we obtain solutions which cut arbitrarily 
small neighborhoods of S. 

4. The gravitational case, (i) For simplicity let N = 2 and V(x) 
= — |x|1/2. To see why [A] excludes the gravitational case, suppose that U 
satisfies (2). Then U can behave no worse than |x|1/2, which contradicts the 
requirement that U have an infinitely deep well at the origin. 

(ii) To show that the P-S condition is not satisfied by, say, L defined 
on M, we consider a sequence of equi-energy elliptical orbits {yn} whose 
perihelions converge to the origin. It is known that equi-energy orbits 
have equal periods, and also equal averaged kinetic energies J(y) and 
equal averaged potential energies E(y). (E.g. see [4].) Hence L(yn) = const 
(and ÔL(yn) = 0). Hence L does not satisfy property [D]. (Also, by perturb­
ing each yn in a neighborhood of its aperihelion, we obtain a sequence {y'n} 
for which \L(y'n)\ is bounded, VL(y )̂ -» 0, and such that {y'n} contains no 
convergent subsequence.) 

(hi) Let p and q be two fixed points distinct from the origin. At the end 
of §3 we showed how our theorems provide for the existence of trajectories 
which join p to q and make arbitrarily tight loops around the singularity 
at the origin. Such solutions do not exist in the gravitational case. 

5. Finally, we mention another method of proving the existence theorems 
of §2. Recall that a function ƒ defined on a Hilbert space H is lower semi-
continuous in the weak topology of H if/_ 1(-oo,c] is weak closed for 
every c, and that such a function is bounded below and attains its minimum 
on every weakly compact subset of H. Hence if /_ 1(-oo,c] is weakly 
compact for every c, it follows that ƒ is bounded below (on H) and attains 
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its minimum Moreover, for such a function/, if M is a weak closed subset 
of ff, then f\M attains its minimum on M. Using this principle one can 
prove the existence theorems of §2, assumption [A] this time being 
necessary to establish the weak closure of the various manifolds M which 
occur in the arguments. 
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