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Introduction. Let 2 = {D,..., D,} be a family of domains in the plane,
containing the origin. We define a radial averaging transformation £, on
2 by which we obtain a starlike domain D*. When 2 is such that the
domains D,, ..., D, are obtained from a fixed domain D by rotation or
reflexion, #, becomes a radial symmetrization. One of the results we
present is an inequality relating the conformal radius of D* to the con-
formal radii of Dy, ..., D, at the origin. This result includes, as particulac
cases, the radial symmetrization results of Szeg6 [6] (for starlike domains),
Marcus [4] (for general domains) and Aharonov and Kirwan [1]. The
inequality for the conformal radii is obtained via an inequality for.con-
formal capacities. A number of applications in the theory of functions is
described.

1. Let M be the half strip {(x, y)|0 < x < 1,0 < y}. We shall say thata
function f is of class B(M) if

(i) fis continuous in M (= closure of M);

(i) 0< f<1inM;

(iii) the set Q; = {(x, y)| f(x,y) < 1} n M is bounded;

(iv) onany halfline {x = xo} N M, f assumes every value 1,0 < 4 < 1,
at least once, but not more than a finite number of times;

(v) feC'QUS)), where Q(f) = {(x, »)I0 < f(x,y) < 1} " M;

(vij for any line x=x5 0=Zx,=1 the set of points on
{x = x0} N Q(f) where df /0y = 0 is finite.

If f € B(M) we denote

Q) ={xfxy)<ipnM (0<isl,
Qo(f) = {(x, »)Iflx,y) = 0} " M.
(1.2) l(xo, 4; f) = meas({x = xo} NQ(f)) O =As1),

where the measure is the linear Lebesgue measure. We note that I(x, 4; f)
is a strictly monotonic increasing function of ,0 < 4 < 1.

We now introduce

DEFINITION 1.1. Let # = {f},...,f,} = B(M) and let 4 = {a;,...,q,}
be a set of positive numbers such that )7, a; = 1. Denote

(1.1)
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(1.3) (x, 1) = il al(x, 4: f));
j=
Qf =QFA={(MMO<y <Hx, "M (0<is1),
(14) Qf = Q§F, A) = {(x, 0=y = *x,0} M,
Q* = QX F; 4) = Qf — QF.
Then the linear averaging transformation £, on & is defined as follows:
S¥x,p) = Ly(F) =0, if(x,y)eQf,
(1.5) =4, ify=0Mx41),0<1i<1,
=1, if(x,y)eM — QF.

The following two results are the main steps in the derivation of the
main theorems.

LEMMA 1.1. Let & and A be as in Definition 1.1. Then f* is uniformly
Lipschitz in M.

THEOREM 1.1. Let # and A be as in Definition 1.1. Let G(t) be a function
defined for t = 0 such that G(t) is continuous, convex and nondecreasing.
Then, with the notations introduced above, we have

(1.6) J f G((1 + IVf*?) P dxdy £ 3 g f f G((1 + IVfj»)!?) dx dy,
o =ad
where Q(f) = Q,(f;) — Qo(f))-

COROLLARY.
U Ao f j VfPdxdy (1S p)
o mUad

Note that the left side of (1.6) is meaningful because of Lemma 1.1.

2. A condenser in the plane is a system C = (Q, E,, E,) where Q is a
domain and E,, E, are disjoint closed sets whose union is the complement
of Q. We shall assume also that E, is compact and E; unbounded. An
alternative notation for C will be C = (D, E,) where D = Q U E,,

If Q satisfies the segment property (i.e., for any point P on the boundary
of Q there exists a segment PP’ lying outside ), there exists a unique
function w, called the potential function of C, such that @ is harmonic in Q
and continuous in the extended plane and such that w = 0 on E, and
o = 1 on E,. In this case the conformal capacity of C may be defined by
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@.1) I(C) = Dirg[w] = f f IVool? dx dy.

Q

We now introduce

DEFINITION 2.1. Let 9 = {D,,...,D,} be a family of open sets in the
complex plane z. Suppose that the closed disk |z — z4| < p (for some
p > 0) is contained in ()}, D;. Let

(22) K4(¢) = {rlz =2z +re*eDj,p <r < o} 0= ¢ < 2m);

dr
@) B@) =[5 and R = RG:Djizo) = pexpl®)
J
(Note that R;(¢) does not depend on p.)
Let A = {a,,...,a,} be a set of positive numbers such that ) 7_, a; = 1.
Set

(2.4) R¥¢) = [] Rié):
ji=1

(25) D* = R(D;z0) = {z = zo + re®|0 < r < R¥(¢),0 £ ¢ < 2m}.

We shall say that &, is a radial averaging transformation on 2 with center
Zq.

If {C;}j-, is a family of condensers, C; = (Q;, E, ;, E, j) = (D}, Eo,))
where ()} Eo; 2 {lz — zo| = p} we define

(2.6) C* = QA({CJ} ) Zo) = (D*, Eg)

where D* = #,({D;}:z0) and E§ = R 4({E, ;}:z0). (E§ is defined in the
same way as D* except that in (2.5) we have 0 £ r £ R*(¢).)
We can now formulate the main result.

THEOREM 2.1. Let {C,, ..., C,} be a family of condensers as above, and
let C* be defined as in (2.6). Suppose that the domains Q,, ..., Q, have the
segment property. Then

2.7) 1C* £ 3 4/I(C).
1

The proof is based on Theorem 1.1. We may assume that z, = 0 and
p = 1. We map the domain |z| < 1, cut along the positive real axis, by
w = Inz onto the half strip0 < u < 00,0 < v < 27 (W = u + iv). Let w;
be the potential function of C;. Denote by f;(u, v) the function w; repre-
sented in (u, v) coordinates. Then we apply Theorem 1.1 (or, more pre-
cisely, inequality (1.7) with p = 2) to &# = {f},..., f,} in the strip men-
tioned above.
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If D is a domain in the plane and z, € D, denote by r(z,, D) the conformal
(or inner) radius of D at z,. (For definition and properties see for instance
Hayman [3, pp. 78-83].) Using a theorem of Polya and Szegé [S] on the
relation between conformal radius and conformal capacity and Theorem
2.1 we obtain

THEOREM 2.2. Let 9 = {D,,...,D,} be a family of domains such that
z9€ ()i D;. Let D* = R (D ; z,) (Definition 2.1). Then

n

(2.8) [T r(zo, D) < r(zo, D¥).

j=1
As a first application of Theorem 2.2 we obtain the following sym-
metrization result:

THEOREM 2.3. Let f(z) = a,z + a,z% + - - be an analytic function in the
unit disk |z| < 1. Let D be the image of |z| < 1 by w = f(2). Let A = {a;}}
be a set of positive numbers such that Y a; = 1, let {a;}} be a set of integers
(% # 0) and let {f;}"| be an arbitrary set of real numbers.

If R(¢) = R(¢; D;0) (see (2.3)) set

(2.9) R*(¢) = [] R(j¢ + B)¥, whereb; = ajf|a;l;
j=1
(2.10) D* = {w = ¢¢"*|0 £ 6 < R¥¢),0 < ¢ < 2n}.
Then
2.11) las] 10, D) < 0, D*)'®, where b =Y b,.
1

Theorem 2.3 includes as particular cases the radial symmetrization
results of Szegd [6], Marcus [4] and Aharonov and Kirwan [1].
We bring now two applications of the preceding theorems.

THEOREM 2.4. Let f(z) and D be as in Theorem 2.3. Denote
(212) D,={w=0€?0=<0< R(¢)‘,‘0 < ¢ < 2n} O0O<t<),
where R(¢) = R(¢; D 0). Then
(2.13) la,| = 10, D) < r(0, D)*".

THEOREM 2.5. Let f(z) = z + a,z% + --- and D be as in Theorem 2.3. Let
R*(@) be defined as in (2.9). Suppose that R*(¢p) < M < 0,0 < ¢ < 2m.
Suppose also that for some set of m rays issuing from the origin, with
arguments ¢, ..., P, we have

sup R*(¢;) = K.
15jsm
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Let D be the disk |w| < M (the entire plane if M = o0) cut along the rays
w=ce¥ Ky<a<M,j=1,...,m, where K, is so chosen that r0, D)
= 1. (It follows from our assumptions that M = 1.) Then K, < K.

Theorem 2.5 implies a number of special “‘covering” theorems such as
Theorem 5 and 6 of Marcus [4] and Theorem 4.2 of Aharonov and
Kirwan [1].

A complete presentation of the results described in this note and
additional applications will appear elsewhere. We mention also that a
discussion of radial averaging transformations with metrics of the form
g(r)drd¢ is given in [2].
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