
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 78, Number 3, May 1972 

FINITE HILBERT TRANSFORMS IN U 

BY R. K. JUBERG1 

Communicated by P. D. Lax, November 11, 1971 

We provide here the setting for an essentially complete analysis of finite 
Hubert transforms as extended to be bounded operators in LP spaces. 
Here LP, 1 < p < oo, denotes the Banach space of pth power summable 
functions with respect to Lebesgue measure over a finite interval of the 
reals. 

The spectrum is described completely and explicitly in all cases and we 
present the elementary relation that exists between the resolvent and its 
inverse. The latter, see (9) or (7), (perhaps more appropriately a particular 
case) could be considered as the analogue of Hubert's reciprocity formulas 
for the transform on the whole line. Where point spectrum exists, the 
eigenfunctions are given and in the case of residual spectrum, the appro­
priate range is presented simply. 

Spectral properties of finite Hubert transforms in LP have been described 
before; in particular, see Widom [12], Shamir [10], and in case p = 2 
Koppelman and Pincus [4]. The analysis in these is more sophisticated 
than that which follows. Here the analysis is based mainly on certain formal 
manipulations in an algebra of elementary operations and proceeds largely 
from the generalized reciprocity formulas mentioned above. 

Finite Hubert transforms are classical and occur often in many and 
varied forms, particularly in applications. There are numerous publications 
where the question of inversion of the transformation in various spaces of 
functions is considered. We mention only the comprehensive work in 
Tricomi [11] and, in addition, direct attention to the book by Butzer and 
Trebels [1]. The results presented here have relevance as well to many of 
the studies where Cauchy type singular integrals and/or generalized Abel 
type integrals enter; see Peters [8], Samko [9], von Wolfersdorf [13], and 
[1]. Here, as above, we have given only certain selected references. 

We shall restrict our attention to the interval [0,1]. On complex valued 
functions we consider the operations Jfi (Riemann-Liouville integral) and 
J*p defined by 
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j*(p(t) = T(pyl f (t- xf~l(p(x)dx9 O < Rej?, 
Jo 

(1) = lim Jb+fiq>(t) (LMimit), Re/? = 0, 
fc-0 + 

and 
at • 

J*V(0 = H/?)-x f (x - r)*~ V M dx, O < Re 0, 

(2) = lim J**+V(f) (LMimit), Rej? = 0, 
b—*0 + 

= - - ^ J*"+ V(f), - 1 < Rej8 < 0. 
at 

For the cases where Re /? = 0 see, for example, Kalisch [3]. In addition let 
My denote the operation given by 

(3) My(p(t) = ty(p{t\ y-complex, 

and R the operation 

(4) R<p(t) = q>{\ - t). 

Let H denote the finite Hubert transform given by 

(5) ^ ( 0 = - (p .v . ) f - ^ - r f x , 
7T Jo t — X 

the integral being the Cauchy principal value. We also consider H as 
extended to a bounded operator in U (1 < p < oo). 

In the algebra of elementary operations generated by the collection 
{Jp, R, My} there is the following statement that is basic. 

THEOREM 1. For - 1 < Re a < 1, 

(6) (cos 7i(x)I + (sin n(x)H = M" V°7*-aMa. 

The equality (6) for Re a ^ 0 is understood as being an arithmetical 
identity on applying each side to a smooth function and in the sense of LP 
(1 < p < oo ) when Re a = 0. 

Theorem 1 was proved by the author in [2] for a real, 0 ^ a < 1. The 
proof presented there is valid for 0 < Re a < 1 and the result extends by 
duality to - 1 < Re a < 0. For Re a = 0, (6) is established through a 
limiting process, as in the definitions (1) and (2), and using results as in 
Kalisch [3] and Love [5]. 
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THEOREM 2. For z = cot rca, 0 < Re a < 1, 

(7) (M*RM~*)(zI - H){M«RM-*){zI - H) = (esc rca)2/. 

The equality (7) is valid (in particular) in the sense of providing an 
arithmetic identity on applying each side to an arbitrary smooth function. 

THEOREM 3. For |Re a| < | the operation 

cp - {M*RM-*)H(M"RM-*)q> 

defines a bounded operator in LP where (1 — |Re a|)~* < p < |Re a|~ *. 

When z = cot rca, 0 < Re a < 1, it follows from (6) through routine 
calculations that (zl - H)f = g, g e Q(0,1) , where 

r.. (sin rca)2 f f 1
1 . x - _a . . , 

7T ( 1 - 0 Jo 
(8) 

Formulas equivalent to (8) for a real appear in [8], Muskhelishvili [7], and 
Mikhlin [6], for example. It is clear from (8) that ƒ e LP if and only if either 
p Re a < 1 or the first term vanishes. From these observations and the 
foregoing theorems we are led to the following. 

THEOREM 4. (i) Spectrum sp(H\Lp) = {cot rca:|Rea - i | ^ |l/p - i l} . 
(ii) In cas^ 1 < p < 2 each z in rte interior of sp(H|Lp) is an eigenvalue of 

multiplicity one and zl — H is onto. For z = cot rca, |Re a — i | < 1/p — |, 
f/œ eigenfunctions are multiples of cpz{t) = (1 - 0""*""1. For 2 < p < oo 
eac/i point z of the interior is in the residual spectrum and the range of zl - H 
has deficiency one. The boundary in all cases 1 < p < oo consists of points 
in the continuous spectrum. For z = cot rca, |Re a — | | = |l/p — £|, the func­
tion (p2(t) = (I — t)'*?'1 is a generalized eigenfunction. 

(iii) The resolvent set p(H\Lp) = {cot rca:|Re a| < i - |l/p - il, a ^ 0} 
and for z e p(H\Lp) the resolvent 

(9) (zl - H)"1 = (sin 7ia)2(MaRM-a)(z/ - H)(M*RM~*) 

where z = cot rca. 
(iv) For z e {cot rca : |Re a - i | < £ - 1/p}, (z/ - H)~x maps (z/ - H)(LP) 

boundedly onto LP (2 < p < oo). 77œ subspace (zl — H)(LP) is the null 
space of the functional given by f(t) = (1 — tf ~ 1t~a, z = —cot rca. 

COROLLARY. For 1 < p < oo 

(10) | |H| | L P ^max( l , tanrc | l /p- i | ) . 



438 R. K. JUBERG 

The spectrum has a simple geometrical description. It can be con­
veniently described and illustrated using the pair of disks bounded by the 
circles centered at + |cot 2n/p\ and which pass through ± i. 

(a) For 0 < |l/p — | | ^ i the sp(#|Lp) is the intersection of the disks. 
(b) For p = 2 the sp(H|L2) is the interval [-f, i]. 
(c) For \l/p - il ^ i the sp(H|Lp) is the union of the disks. 
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