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Let X and Y be real Banach spaces, ƒ a mapping of X into 2Y, y0 an ele­
ment of Y It is our object in the present discussion to present a new 
existence theory for solutions of the equation y0£f(x) which extends, 
sharpens, and simplifies the corresponding theory for X — Y and ƒ hyper-
maximal accretive. This new existence theory is founded in a very basic 
way upon the fixed point theory of self-mappings of the Banach space Y 
(for example, of mappings of nonexpansive or of condensive type) and 
yields in its turn an interesting extension of these fixed point theories. 

In its most general form, the class of mappings which we wish to treat 
is given in the following form : 

DEFINITION 1. Let X and Y be Banach spaces, K a mapping of X into Y, 
F a class of mappings of Y into 2Y. 

The mapping f of X into 2Y is said to (F, K)-generative if the mapping 
g = K( ƒ + K)~ x lies in the class F.If X = Y and K is the identity mapping, 
we say that ƒ is F-generative. If, in addition, F is the class of nonexpansive 
mappings of Y into Y, we say that ƒ is generative. 

We recall that a mapping ƒ of Y into 2Y is said to be hypermaximal 
accretive (m-accretive) if for each Ç > 0, (ƒ + if)'1 is a nonexpansive map­
ping of Y [ l]-[5]. In terms of Definition 1, ƒ is hypermaximal accretive if 
if is generative for each £ > 0. If Y is a Hilbert space and the range of 
(ƒ + ƒ) is all of Y, then ƒ is hypermaximal accretive whenever 

(y — w, x — u) ^ 0 

for all y in f(x), w in f(u), while ƒ is generative if the following weaker 
inequality is satisfied 

(y - w, x - u) ^ - i l l y - w||2. 

In our results, we impose several conditions upon the class of mappings 
F which are described in detail in the following definition : 

DEFINITION 2. F is said to be closed under translation if for each g in F and 
each pair of elements w0 and wx of Y, the mapping g0 given by g0(y) = 
g(y + w0) + Wx also lies in the class F. 
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F is said to have the weak fixed point property on balls if for each R0 > 0 
and each g in F such that, for each R ^ R0, g maps the ball BR(0, Y) into 
itself there exists a fixed point w0 of g in 1^(0, Y\ i.e. vv0 e g(w0). 

F is said to have the weak almost-fixed point property on balls if for each 
R0 > 0 and each g in F such that for all R §; R0i g maps BR(0, Y) into itself 
then g has the almost-fixed point property on BRo(0, Y\ i.e. 0 lies in the closure 
ofil-g^B^Y)). 

For stating our basic results, we also need the following generalization 
of the concept of duality mapping and of coercivity. 

DEFINITION 3. Let K be a mapping of X into Y. Then a mapping M of X 
into Y* is said to be a duality mapping for K if for each u in X, 

(M(ti), K(u)) = \\K(u)\\\ \\M(u)\\ = ||K(n)||. 

The mapping f of X into 2Y is said to be coercive with respect to the map­
ping M if there exists a function c from R+ to R1 such that l i m ^ ^ c(r) 
= + oo such that for each u in X and each y in f(u\ 

(y,M(u))^c(\\u\\)\\M(u)\\. 

Our basic existence theorems are the following: 

THEOREM 1. Let X and Y be Banach spaces, ƒ a mapping of X into 2Y,y0a 
point of Y. Let Kbe a bounded mapping of X into Y,M a mapping of X into 
Y* which is a duality mapping for K,F a translation invariant class of map­
pings of Y into 2Y such that F has the weak fixed point property on balls. Sup­
pose that ƒ is (F, K)-generative, and that there exists R0 > 0 such that for 
each u in X with \\u\\ ̂  .R0, we have the inequality 

(1) (y,M(u))^(y0,M(u)) 

for each y in f(u). 
Then there exists u0 in X such that y0 e f(u0). 

COROLLARY 1 TO THEOREM 1. If in Theorem 1, we either have X — Y 
with K the identity mapping or replace {I) by the strict inequality 

(2) (y,M(u))>(y0,M(u)) 

for \\u\\ > R0, y e ƒ (M), then the solution u0 of the equation y0 G f(u0) can be 
chosen in 2^(0, X). 

COROLLARY 2 TO THEOREM 1. If in Theorem 1, we replace the inequality 
(I) by the hypothesis that ƒ is coercive with respect to M, then the range off is 
all of Y. 

THEOREM 2. Suppose that the hypotheses of Theorem 1 all hold except that 
F satisfies the weak almost-fixed point property on balls rather than the weak 
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fixed point property on balls. We then obtain the weaker conclusion that y0 

lies in the closure of the range off If either X = Y with K the identity map 
or the strict inequality (2) holds, then y0 lies in the closure of / ( ^ ( O , X)). 

COROLLARY TO THEOREM 2. If F satisfies the weak almost-fixed point 
property on balls, ƒ is a mapping of X into 2Y which is (F, Kygenerative and 
with ƒ coercive with respect to M, then the range of f is dense in Y. 

To give a particular application of Theorems 1 and 2, we apply them to 
the special case of generative mappings. 

THEOREM 3. Let Y be a Banach space, ƒ a coercive generative mapping of 
Y into 2Y (and in particular, ƒ may be hypermaximal accretive). Then the 
range of f is dense in Y If closed balls in Y have normal structure in the sense 
of Brodski and Milman, the range of f is all of Y. 

For the case in which both Y and 7* are uniformly convex, the result of 
Theorem 3 was proved by the writer in [2], [3] for hypermaximal accretive 
ƒ H. Brezis pointed out in a letter to the writer that a modification of the 
argument in [3] yields the conclusion without assuming that Y* is uni­
formly convex (which was the stimulus to the study given in the present 
paper). For general Y and ƒ hypermaximal accretive and coercive, the 
density of the range of ƒ has been noted independently by Yen in a recent 
note [8]. 

PROOF OF THEOREM 1. Let y0 be the given point of Y. By hypothesis, if 
g = K(f + K)~ \ the mapping g lies in the class F. Let f0 be the mapping 
of X into 2Y given by f0(y) = f(y) — y0. A given element w of Y lies in 
(f0 + K)(x) for a point x in X if and only if (w +y0) e (ƒ + K)(x), i.e. 

(f0 + K)-\w) = (f+K)-\w + y0). 

Since g = K(f+K)~1 is a member of the class F, and since 
K(f0 + K)~1(w) = g(w + y0), it follows from the assumption that F is 
translation invariant that the mapping g0 = K(f0 + K ) - 1 lies in the class 
F. 

Since K is assumed to be a bounded mapping (i.e. K maps bounded sets 
of X into bounded subsets of Y), there exists R± > 0 such that £(2^(0, X)) 
c BRl(0, Y). (When X = Y and K is the identity mapping, we take R± = R0.) 
We now assert that for each R ^ Rl9 the mapping g0 carries BR(0, Y) into 
itself. Indeed, let w be an element of BR(0, Y) for such an R, and let y be a 
point of g0(w) such that \\y\\ ^ R. Then y = K(x) for a point x in X such 
that x e ( f0 + K)~ 1(w), i.e. w e f0(x) + K(x). Thus there exists an element v 
of f(x) such that w == v — y0 + K(x). Since y lies outside of BRl(0, Y), and 
y = K(x\ it follows that x lies outside of BRo(0, X). Hence the inequality (1) 
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of the hypothesis of Theorem 1 implies that (M(x), v — y0) ^ 0. Since M 
is a duality mapping for K, we have 

(M(x),K(x)) = \\K(x)\\2 = \\y\\2. 

Hence 

(M(x), w) = (M(x), t; - 3>o) + (M(x), X(x)) ^ Ml2, 

so that 

HylP ^ IIA^(JC)|| - Ilwll = IIJCC ĉ)ll - llwll = II3/II - llwll. 

Finally, we see that \\y\\ ^ ||w|| ^ R. 
By hypothesis, F has the weak fixed point property on balls. Hence g0 

has a fixed point w0 in BRl(0, Y) such that w0 e g0(w0). For such an element 
w0, we have w0 = K(x0) while w0ef(x0) — y0 + £(x0). It follows that 
y0e/(x0). q.e.d. 

PROOF OF COROLLARY 1 TO THEOREM 1. If X = Y and X is the identity, 
then w0 = x0, and by our choice of RuRi = R0. Therefore, y0 lies in 
/ (^ (O, X)). If the inequality (2) holds (with a strict inequality), it excludes 
y0 e f(x0) if x0 lies outside the ball 2^(0, X). q.e.d. 

PROOF OF COROLLARY 2 TO THEOREM 1. The coerciveness of ƒ with respect 
to M implies trivially that the inequality (1) holds for a given y0 of Y outside 
of some ball BRo(0, X) depending upon y0. Hence by Theorem 1, R(f) 
= Y. q.e.d. 

PROOF OF THEOREM 2. We apply the proof of Theorem 1 and obtain the 
conclusion that g0 maps BR(0, Y) into itself for each R ^ Rt. If F has the 
weak almost-fixed point property on balls, it follows that 0 lies in the closure 
of (I — go)(BRl(09 7)). Thus, there must exist a sequence {w„} in BRl(Q, Y) 
and for each n, an element yn of go(ww) such that w„ — yn -> 0 as n -• 00. 
Since yn e g0(w„), there exists xn in X for each n such that j/w = K(xn) while 
*«G (/o + ^ ) ~ 1(w„). Hence, there exists vn in /(x„) such that 

w„ = t;B - y0 + X(x„) = y,, + t;„ - y0-

Hence, vn — y0 = wn — yn -*> 0 as n -• 00, and y0 lies in the closure of the 
range of ƒ Under the appropriate additional hypotheses, y0 lies in the 
closure of / (^ (O, X)). q.e.d. 

The proof of the Corollary to Theorem 2 follows like that of Corollary 2 
to Theorem 1. 

The proof of Theorem 3 follows directly from Theorems 1 and 2 applied 
to the case of the class F0 of nonexpansive mappings of 7, since F0 has the 
weak almost-fixed point property on balls for any Banach space Y and the 
weak fixed point property if Y satisfies the condition that closed balls have 
normal structure. 
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THEOREM 4. The results of Theorems 1,2, and 3 as well as their Corollaries 
all remain valid if the hypothesis that ƒ is (F, K)-generative is replaced by the 
hypothesis that there exists a > 0 such that a / is (F, K)-generative. 

We merely note that y0 e (a/)(x0) if and only if a" ly0ef(x0), while the 
inequality (1) goes over from ƒ to af in the appropriate way. 

REMARK. An interesting specialization of the above results for X — Y 
and K the identity mapping is that in which we take for the class F, 
the class Fc of condensing mappings in the sense of Sadovski [7] to which 
Theorem 1 may be applied. 

The construction of the class of (F, K)-generative mappings from a class 
F of mappings such that solvability properties of the equation y0 e f(x0)îor 
the generative mapping ƒ follow from the fixed point properties of the map­
ping g = K(f + K)~l in F has an inverse process by which we generate 
classes of mappings having the weak fixed point property on balls from 
F-generative mappings. 

THEOREM 5. Let Y be a Banach space, F a translation invariant class of 
mappings of Y into 2Y. We generate two sequences of classes of mappings 
{Fn} and {Gn} (n ^ 1) by the following recursive definition: 

For n = 0, let F0 = F. For n ^ 1, Gn = {ƒ I ƒ: Y -• 2Y, there exists a > 0 
such that (I + af)~lliesinFn_1}.Forn ^ 1,F„ = {g\g : Y -» 2y, g = I - f 
for some ƒ in G„}. 

77*en *ƒ F has the weak fixed point property on balls, so does each Fn,and 
each mapping ƒ in Gn satisfies the conditions of Theorem 1. 

If F has the weak almost-fixed point property on balls, so does each Fn, and 
each mapping ƒ in any Gn satisfies the condition of Theorem 2. 

PROOF OF THEOREM 5. It follows by a routine verification that each of the 
classes Fn and Gn can be recursively proved to be translation invariant. 
Suppose F„_ ! has been shown to have the weak fixed point property. Then 
each mapping ƒ in Gn satisfies the conclusions of Theorem 1. We now show 
that Fn satisfies the weak fixed point property on balls. By definition, if g is 
an element of F„, g = / — ƒ for some ƒ in Gn. Suppose that there exists 
R0 > 0 such that for each R ^ R0, g maps BR(0, Y) into BR(0, Y). Let u be 
an element outside of BRo(0, 7), R = Hull, y e f(u). Then 

(y, M(u)) - (u, M(u)) + (y - u, M(u)) ^ R2 - \\y - u\\R ^ 0 

where M is a section of the duality mapping J, since u — ye g(u) implies 
that 11u — y\\ ^ R. Hence by Theorem 1 and Corollary 1, there exists an 
element u0 of BRo(0, Y) such that 0 e f(u0\ i.e. u0 G g(w0). Hence Fn has the 
weak fixed point property on balls. 

A similar argument for the weak almost-fixed point property follows 
from Theorem 2. The remainder of Theorem 5 then follows from Theorems 
1 and 2. 
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REMARK . In the special cases where F is either F0, the class of nonexpan­
sive self-mappings of Y into Y, or Fc, the class of condensive self-mappings 
of Y into 7, it is easy to verify that the corresponding classes F0tH and Fcn 

increase with n and yield interesting classes of self-mappings of Y with the 
weak fixed point and almost-fixed point properties under the appropriate 
hypotheses. 

REMARK. It follows from a recent result of R. H. Martin [6] that a map­
ping ƒ of the Banach space Y into itself which is continuous and such that 
(ƒ + £ƒ)- * is nonexpansive on R(I + £ƒ) for each Ç > 0 has the property 
that ƒ is hypermaximal accretive. This provides an interesting class of 
maps ƒ for which the result of Theorem 3 applies. 

BIBLIOGRAPHY 

1. F. E. Browder, Nonlinear equations of evolution and nonlinear accretive operators in 
Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 867-874. MR 38 #580. 

2. —, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. 
Amer. Math. Soc. 73 (1967), 875-882. MR 38 #581. 

3. , Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. 
Sympos. Pure Math., vol. 18, part 2, Amer. Math. Soc, Providence, R.I. (to appear). 

4. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 
508-520. MR 37 #1820. 

5. , Accretive operators and nonlinear evolution equations in Banach spaces, Proc. 
Sympos. Pure Math., vol. 18, part 1, Amer. Math. Soc, Providence, R.I., 1970, pp. 138-161. 

6. R. H. Martin, Jr., A global existence theorem for autonomous differential equations in a 
Banach space (to appear). 

7. B. N. Sadovskiï, On a fixed point principle, Funkcional. Anal, i Prilozen. 1 (1967), no. 2, 
74-76. (Russian) MR 35 #2184. 

8. C.-L. Yen, The range of m-dissipative sets, Bull. Amer. Math. Soc. (to appear). 
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637 


