TAMING IRREGULAR SETS OF HOMEOMORPHISMS

BY P. F. DUVALL, JR. AND L. S. HUSCH¹ Communicated by O. G. Harrold, July 12, 1971

1. **Introduction.** Let \mathscr{U} be an n-dimensional open connected manifold, $\mathscr{U}^{\infty} = \mathscr{U} \cup \{\infty\}$ the one-point compactification of \mathscr{U} , and d a metric on \mathscr{U}^{∞} . Suppose that h is a homeomorphism of \mathscr{U} onto itself and let h_{∞} be the extension of h to \mathscr{U}^{∞} . If $p \in \mathscr{U}^{\infty}$, we say that h is regular at p if for each $\varepsilon > 0$ there is a $\delta > 0$ such that $d(p,q) < \delta$ implies that $d(h_{\infty}^{n}(p), h_{\infty}^{n}(q)) < \varepsilon$ for all n. If h is not regular at p, we say that p is an irregular point of h.

Homeomorphisms with finitely or countably many irregular points have been studied extensively [4]-[10], [12]. In this paper, we consider homeomorphisms h which satisfy

(1) the set of irregular points of h is $P \cup \{\infty\}$, where P is a k-dimensional continuum with $k \le n - 2$,

and seek conditions on h which imply that P is nicely embedded. Details of proofs will appear elsewhere.

- 2. Nice homeomorphisms. Suppose that \mathcal{U} and h are as above. We say that h is a *nice homeomorphism* if h satisfies (1),
 - (2) for each $x \in \mathcal{U} P$, $\overline{\lim}_{n \to \infty} h^n(x) \subset P$ and $\overline{\lim}_{n \to -\infty} h^n(x) = \infty$, and
 - (3) the mapping $f_h: \mathcal{U} \to P$ given by $f_h(x) = \lim_{n \to \infty} h^n(x)$ exists and is continuous.

REMARKS. If h satisfies (1), the work of T. Homma and S. Kinoshita [5] can be used to show that either h or h^{-1} satisfies (2), so that the strength of our assumptions is in (3). For example, let $h: S^1 \times R^2 \to S^1 \times R^2$ be defined by $h(x,t)=(k(x),\frac{1}{2}t)$ where $k:S^1\to S^1$ is rotation through an irrational multiple of π radians. Then h satisfies (1) and (2) with $P=S^1\times\{0\}$, but h does not satisfy (3).

The canonical example of a nice homeomorphism is the case where \mathcal{U} is an open mapping cylinder over P and h is a homeomorphism which "pushes in" along the product structure.

PROPOSITION 1. If h is a nice homeomorphism, then

- (i) P is an absolute neighborhood retract;
- (ii) f_h is onto;
- (iii) the fixed point set of h is P;

AMS 1970 subject classifications. Primary 57E20; Secondary 57A35, 57A40.

Research of the second author was partially supported by NSF Grant GP-15357.

- (iv) the inclusion $P \subseteq \mathcal{U}$ is a homotopy equivalence;
- (v) the natural projection p of $\mathcal{U} P$ onto the orbit space $\hat{\mathcal{U}}$ of $h|\mathcal{U} P$ is a covering map;
 - (vi) $\hat{\mathcal{U}}$ is a closed n-manifold; and
 - (vii) f_h induces a map $\hat{f_h}: \hat{\mathcal{U}} \to P$ such that $\hat{f_h}p = f_h$.
- (i)-(iv) follow from point set arguments and the fact that $hf_h = f_h$. (v)-(vii) follow from elementary facts about covering spaces and [11].
- 3. AFG sets and maps. If X is a continuum in the ENR M, we say that X has property AFG if there is a neighborhood W of X in M such that for each neighborhood U of X in W there is a neighborhood V of X, $V \subset U$ such that each map of S^1 into V which is null homologous in U is null homotopic in U.

It can be shown, in the spirit of [13], that the AFG property depends only on the homotopy type of X.

If f is a proper map between manifolds, we say that f is an AFG map provided that $f^{-1}(x)$ has property AFG for each x in the image of f.

- 4. Taming irregular sets in high dimensions. If P is a polyhedron in \mathcal{U} , we say that P is *locally flat* if P has a triangulation in which each simplex is locally flat.
- THEOREM 2. If h is a nice homeomorphism with P a polyhedron, $n \ge 6$, and $k + 3 \le n$, then P is locally flat if and only if \hat{f}_h is an AFG map.

Theorem 2 is proven by using the homotopy properties of \hat{f}_h to show that P is locally nice and by applying Bryant and Seebeck [3]. An important step in the proof is the application of L. Siebenmann's obstruction theory [15] to prove

Theorem 3. If \hat{f}_h is AFG and B is the open star of some point in P in some triangulation of P, then $\hat{f}_h^{-1}(B)$ is homeomorphic to the interior of a compact manifold provided $n \geq 6$.

5. The three-dimensional case. If h is a nice homeomorphism, we say that h has a cross-section if there is a closed, locally flat (n-1)-manifold $T \subset \mathcal{U} - P$ such that $f_h^{-1}(x) \cap T$ is a continuum for each $x \in P$, T separates \mathcal{U} into two components with P in the bounded component, and $h(T) \cap T = \emptyset$.

THEOREM 4. Let h be a nice homeomorphism with cross-section, n = 3, and k = 1. Then P is locally tame at each point and \mathcal{U} is homeomorphic to the interior of a cube with q handles, where $q = \operatorname{rank} H_1(P)$.

The proof of Theorem 4 is a lengthy argument using standard tools in three-dimensional topology. An important step in the proof involves an appeal to a taming theorem of D. R. McMillan [14].

If $p \in \mathcal{U}$, we say that h is positively regular at p if for each $\varepsilon > 0$ there exists a $\delta > 0$ such that $d(p,q) < \delta$ implies $d(h^n(p), h^n(q)) < \varepsilon$ for all n > 0.

PROPOSITION 5. If h satisfies (1) and (2), $k = 1, P \ncong S^1, h | P = identity$, and h is positively regular on \mathcal{U} , then h is a nice homeomorphism.

Theorem 4, then, has an obvious restatement in terms of positive regularity. Examples can be given to show that Theorem 4 cannot be extended to higher dimensions. In fact, the construction of M. Brown [2] using the Andrews-Curtis Theorem [1] can be used to construct, for each $n \ge 4$ and $1 \le k \le n-3$, a homeomorphism h which satisfies (1) and (2) with $\mathcal{U} = \mathbb{R}^n$ and P a wildly embedded k-cell, such that h has a cross-section and is positively regular on \mathbb{R}^n .

REFERENCES

- 1. J. J. Andrews and M. L. Curtis, n-space modulo an arc, Ann. of Math. (2) 75 (1962), 1-7. MR 25 #2590.
- 2. M. Brown, Wild cells and spheres in higher dimensions, Michigan Math. J. 14 (1967),
- 219-224. MR 36 # 4533.
 3. J. L. Bryant and C. L. Seebeck III, Locally nice embeddings in codimension three, Quart. J. Math. Oxford Ser. (2) 21 (1970), 265-272.
- 4. T. Homma and S. Kinoshita, On a topological characterization of the dilation in E³, Osaka Math. J. 6 (1954), 135-144.
- 5. —, On homeomorphisms which are regular except for a finite number of points, Osaka Math. J. 7 (1955), 29–38. MR 16, 1140.
- 6. L. S. Husch, A homotopy theoretic characterization of the translation in Eⁿ, Compositio Math. (to appear).
- Topological characterization of the dilation and the translation in Frechet spaces, Math. Ann. 190 (1970), 1-5.
- 8. —, Topological characterization of the dilation in E', Proc. Amer. Math. Soc. 28 (1971), 234-236.

 9. S. K. Kaul, On almost regular homeomorphisms, Canad. J. Math. 20 (1968), 1-6.
- MR 36 #5908.
- 10. B. v. Kerékjártó, Topologische Characterisierungen der linearen Abbildungen, Acta Litt. Acad. Sci. Szeged 6 (1934), 235-262.
- 11. S. Kinoshita, Notes on covering transformation groups, Proc. Amer. Math. Soc. 19 (1968), 421-424. MR 36 #5921.
 - -, On quasi-translations in 3-space, Fund. Math. 56 (1964), 69-79. MR 30 #1502. 13. R. C. Lacher, Cell-like spaces, Proc. Amer. Math. Soc. 20 (1969), 598-602. MR 38
- #2754.
- 14. D. R. McMillan, Jr., Local properties of the embedding of a graph in a three-manifold, Canad. J. Math. 18 (1966), 517-528. MR 34 #6754.
 15. L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Thesis, Princeton University, Princeton, N.J., 1965.
- DEPARTMENT OF MATHEMATICS, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VIRGINIA 24061

Current address: (P. F. Duvall, Jr.) Department of Mathematics and Statistics, Oklahoma State University, Stillwater, Oklahoma 74074

Current address: (L. S. Husch) Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916