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1. Introduction. Let °U be an n-dimensional open connected manifold, 
^°° = ^ u { o o } t h e one-point compactification of °U, and d a metric on 
^°°. Suppose that h is a homeomorphism of ^U onto itself and let h^ be the 
extension of h to ^°°. If p e ^°°, we say that h is regular at p if for each 
£ > 0 there is a ö > 0 such that d(p, q) < S implies that d(/C(p), hn^(q)) < s 
for all n. If h is not regular at p, we say that p is an irregular point of h. 

Homeomorphisms with finitely or countably many irregular points have 
been studied extensively [4]-[10], [12]. In this paper, we consider homeo­
morphisms h which satisfy 

(1) the set of irregular points of h is P u {oo}, where P is a fc-dimen-
sional continuum with k <ï n — 2, 

and seek conditions on h which imply that P is nicely embedded. Details 
of proofs will appear elsewhere. 

2. Nice homeomorphisms. Suppose that % and h are as above. We say 
that h is a nice homeomorphism if h satisfies (1), 

(2) for each x e f - ? , l im, ,^ hn{x) a P and lim,,.*^ hn(x) = oo, and 

(3) the mapping fh:°l/ -> P given by /fc(x) = lim^*, /zM(x) exists and is 
continuous. 

REMARKS. If A satisfies (1), the work of T. Homma and S. Kinoshita [5\ 
can be used to show that either h or / T 1 satisfies (2), so that the strength 
of our assumptions is in (3). For example, let h:Sl x R2 -> S1 x R2 be 
defined by h(x,t) = (k(x),?t) where k'.S1 -• S1 is rotation through an 
irrational multiple of 7r radians. Then h satisfies (1) and (2) with P = S1 

x {0}, but h does not satisfy (3). 
The canonical example of a nice homeomorphism is the case where ^ i s 

an open mapping cylinder over P and h is a homeomorphism which 
"pushes in" along the product structure. 

PROPOSITION I. If h is a nice homeomorphism, then 
(i) P is an absolute neighborhood retract ; 
(ii) fh is onto ; 
(iii) the fixed point set of his P; 
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(iv) the inclusion P ^ °ll is a homotopy equivalence ; 
(v) the natural projection p of °U — P onto the orbit space <% of h\<% — P 

is a covering map ; 
(vi) <# is a closed n-manifold; and 
(vii) fh induces a map fh:% -• Psuch that fhp = fh. 

(i)-(iv) follow from point set arguments and the fact that hfh = fh. 
(v)-(vii) follow from elementary facts about covering spaces and [11]. 

3. AFG sets and maps. If X is a continuum in the ENR M, we say that X 
has property AFG if there is a neighborhood W of X in M such that for 
each neighborhood U of X in W there is a neighborhood K o f i , F c [/ 
such that each map of S1 into V which is null homologous in U is null 
homotopic in U. 

It can be shown, in the spirit of [13], that the AFG property depends only 
on the homotopy type of X. 

If ƒ is a proper map between manifolds, we say that ƒ is an AFG map 
provided that f~1(x) has property AFG for each x in the image of ƒ 

4. Taming irregular sets in high dimensions. If P is a polyhedron in %9 we 
say that P is locally flat if P has a triangulation in which each simplex is 
locally flat. 

THEOREM 2. If h is a nice homeomorphism with P a polyhedron, n ^ 6, 
and k + 3 ^ n, then P is locally flat if and only if fh is an AFG map. 

Theorem 2 is proven by using the homotopy properties of fh to show 
that P is locally nice and by applying Bryant and Seebeck [3]. An important 
step in the proof is the application of L. Siebenmann's obstruction theory 
[15] to prove 

THEOREM 3. Iffh is AFG and B is the open star of some point in P in some 
triangulation of P, then fh~

 l(B) is homeomorphic to the interior of a compact 
manifold provided n ^ 6. 

5. The three-dimensional case. If h is a nice homeomorphism, we say that 
h has a cross-section if there is a closed, locally flat (n — l)-manifold 
T a ty, — P such that fh~

 1(x) n T is a continuum for each xeP,T separates 
% into two components with P in the bounded component, and h(T) nT 
= 0. 

THEOREM 4. Let h be a nice homeomorphism with cross-section, n = 3, and 
k = 1. Then P is locally tame at each point and °U is homeomorphic to the 
interior of a cube with q handles, where q = rank H^P). 

The proof of Theorem 4 is a lengthy argument using standard tools in 
three-dimensional topology. An important step in the proof involves an 
appeal to a taming theorem of D. R. McMillan [14]. 
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If p e °ll, we say that h is positively regular at p if for each e > 0 there exists 
a ö > 0 such that d(p, q) < ô implies d(hn{p\ hn(q)) < s for all n > 0. 

PROPOSITIONS. If h satisfies (I) and (2), k = 1,P ^ S\/i |P = identity, and 
h is positively regular on %, then h is a nice homeomorphism. 

Theorem 4, then, has an obvious restatement in terms of positive regu­
larity. Examples can be given to show that Theorem 4 cannot be extended 
to higher dimensions. In fact, the construction of M. Brown [2] using the 
Andrews-Curtis Theorem [1] can be used to construct, for each n ^ 4 and 
1 ^ / c ^ n — 3, a homeomorphism h which satisfies (1) and (2) with 
°U = Rn and P a wildly embedded fe-cell, such that h has a cross-section and 
is positively regular on Rn. 
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