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ABSTRACT. Let K be an arbitrary totally real algebraic number field of 
degree n ^ 2. It is shown that there exists an upper bound on the 
absolute value of the discriminant of any totally imaginary quadratic 
extension of K of class number h with at most one possible exception. 
This bound depends in an effective way on the parameters of the field K. 

1. Introduction. The problem of determining all imaginary quadratic 
fields of class number h has long been of importance in number theory. In 
recent years this problem has been solved for h = 1 by Stark [8] and for 
h = 2 by Goldstein [3], Baker [1], and Stark [9]. So far no real progress has 
been made for any other value of h. 

This note is an announcement of research which extends some of the 
known results on class numbers of imaginary quadratic fields to the case of 
totally imaginary quadratic extensions of a totally real field. The main 
result is the following. 

THEOREM 1. Let K be an arbitrary totally real algebraic number field, h an 
arbitrary positive integer. With at most one possible exception, all totally 
imaginary quadratic extensions L of K with class number h satisfy 

\dL\<C(K9h) 

where C(K, h) is an effectively computable constant and dL is the discriminant 
ofL. 

This result is a generalization of similar theorems due to Heilbronn and 
Linfoot [4] for ft = 1 and Tatuzawa [11] for arbitrary ft, both results in the 
special case where K = Q and L is an imaginary quadratic field. A sketch 
of the proof will be given here. The details will appear elsewhere. 

2. The estimate for H(x,x\ Let Il(x) = Y,NWZX h and let U(x,x) = 
Y,Nwzx Z(2ï) where 21 runs over all integral ideals of some algebraic number 
field K. In the case K = Q there is a classical result of Pólya [6] which says 
that |II(x, x)\ < I112 log /, where / is the period of the character /. At the 
same time Pólya's result appeared, Landau [5] obtained an extension of 
the result to the case where the degree of K is at least two and x is an ideal 
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character of K. Unfortunately, Landau's bound depends in an undeter­
mined way on the parameters of the field K. 

In the course of the proof of Theorem 1, the following effective form of 
Landau's theorem is obtained. 

THEOREM 2. Let K be an algebraic number field of degree n^2. Let % be 
any ideal character of K which is primitive modulo its conductor f. Define 
k = |ATf • dK\ where JVf is the norm of f and dK is the discriminant of K. With 
Tl(x) and IT(x, x) defined as above, 

(1) |n(x) - KKX\ < e28'2n+5(n + l)5(M + 1 ) /2 |4|1/ (M+1)logw |4| • x<»-*>/(«+1>; 

(2) |n(x,x)l < e2S'2n+6(n + l)5n/2 + 7/2k1/{n+1)logk- x(»~mn+i) 

where KK is the residue of ÇK(s) at s = 1. 

In Schanuel's unpublished thesis [7] a similar bound is obtained using 
geometric methods rather than complex analysis. Again, however, the 
dependence of the constants involved on the parameters of the base field K 
is not explicitly determined. 

3. A lower bound for L(l,%). The determination of a lower bound for 
L(l, x) is the key element in the proof of Theorem 1. It is in this determina­
tion that the possibility of an exception appears. 

THEOREM 3. Let K be any totally real algebraic number field of degree 
n^.2 with x a real, nonprincipal ideal character of K primitive modulo its 
conductor f. Let s < min{l/(n + 1), 4(n + l)2a} where 1 — a is the largest 
real zero of ÇK(s). Assume log/c ^ max{4(n + 11), 1/e}. Then 

£-l l-443 f i(»+l) /2 

L ( 1 , Z ) > 2n/2enl2(n + l)KKk^n + 2^2 

with at most one possible exceptional character x> 

The proof of this theorem follows that of Tatuzawa [11] in the case 
K = Q with ordinary Dirichlet characters replaced by ideal characters. 
The use of ideal characters makes the constants involved in the estimates 
considerably larger. The proof is based on the fact that when L(l, x) is too 
small, L(s, x) must have a real zero close to s = 1. If L(l, Xi) and L(l, Xi) 
are both small and X\Xinot the principal character, then a certain analytic 
function would have too many zeros in a neighborhood of s = 1 and a 
contradiction would be obtained. It should be noted that in Theorem 2 the 
order of magnitude of the estimates is x

in~1)/{n+i). It is crucial that the 
exponent of x be less than one as that enables one to make estimates of the 
L-series in parts of the critical strip. 

4. Proof of Theorem 1. The proof of Theorem 1 makes use of the above 
information on L(l, x) and several facts about the relationship of the fields 
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K and L where K is totally real and L is a totally imaginary quadratic 
extension of K. Let % be the real ideal character of K associated to L. Let f 
be the conductor of %. Then the following facts apply : 

a. £K(s)L(s,x) = CL(S); 
b. %L(l,x) = KL; 
c. the free part of the unit group of L has the same rank as the free part 

of the unit group of K and thus 2n~1RK = g0(L/K)RL where RK (respec­
tively RL) is the regulator of K (respectively L), and g0(L/K) is a positive 
integer (see [2]) ; 

d. dL = Nld2
K. 

All these facts together with Theorem 3 imply Theorem 1. The constant 
C(K, h) can be shown to depend only on h, dK, n, and the positive real zeros 
of CK(S)- For any given field K this information is available and the constant 
is effectively determined. 
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