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The Jacobson theory for rings is not well adapted to the study of a 
topological ring R because the basic items of that theory such as the primi­
tive ideals, the modular maximal right ideals and the radical need not be 
closed in R. In special cases, such as Banach algebras [7] or more generally 
g-rings [3], all these items are closed while in some other cases such as 
locally compact rings [5] one has the radical closed but not necessarily the 
primitive ideals or the modular maximal right ideals. 

We approach the study of ideal theory for R by using only closed one­
sided or two-sided ideals (ideals are two-sided unless otherwise specified). 
A number of approaches are outlined below each providing useful con­
clusions. The results obtained are sharpest in case JR has the additional 
structure of being an (incomplete) normed algebra. Detailed proofs will 
appear elsewhere. 

Examples show [10] that a right ideal in R can be a maximal-closed 
modular right ideal without being a maximal modular right ideal even for 
normed algebras. Call an ideal K topologically primitive if it has the form 
K = (M:R) = {x€R:Rx a M} and denote by the topological radical, 
top rad JR, the intersection of all topologically primitive ideals. A theory of 
topologically primitive ideals is developed. In some ways it differs from the 
usual theory for primitive ideals. For example, if K is a topologically 
primitive ideal in R and J is an ideal in R, then K n I need not be a topo­
logically primitive ideal in I. Here we focus attention on the following 
question. Let ^,.(%) be the intersection of the maximal-closed modular 
right (left) ideals. Is tyr = S$t = top rad R (in analogy with primitive ideal 
theory)? 

We find the answer to be affirmative for certain classes of normed 
algebras. A first rather easy case is for a normed algebra which is a dense 
ideal in a Banach algebra. 

For a complex normed algebra B with involution x -• x* let P denote 
the closure in the set of all selfadjoint elements of the set of all finite sums 
of elements of the form x*x (P is the "positive cone" of B). In these terms 
we have the following result. 
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THEOREM 1. Let B a complex normed algebra with an involution. If B is 
semisimple and P n( — P) = (0), then tyr = S$t = top rad B = (0). 

As a quite special case of Theorem 1, any dense *-subalgebra B of a 
complex Banach algebra B0 with involution and faithful *-representation 
satisfies these conclusions. In particular B can be any dense *-subalgebra 
of a #*-algebra or of the group algebra of any locally compact group. 

THEOREM 2. Let B be a dense subalgebra of a Banach algebra B0 which 
has the property that any closed one-sided ideal ^ (0) contains a nonzero 
idempotent. Then tyr = % = top rad B = (0). 

In particular this holds if B is a dense subalgebra of a semisimple 
annihilator Banach algebra [1] and so examples abound. 

Next let t)r(T>i) be the intersection of the closed modular maximal right 
(left) ideals. With each closed modular maximal right ideal M we consider 
the associated closed primitive ideal (M:R). It is known [6, p. 36] that ÎV is 
the intersection of these associated primitive ideals and hence is an ideal. 
An open question is whether or not T>r = Dj must hold. It does if R is locally 
compact [5]. 

THEOREM 3. Let Rbe a dense *-subring of a topological ring R0 with an 
involution. Suppose that, in R0, every closed ideal is a * -ideal Then, for the 
ring R, T>r = D,. 

From this it follows that 35r = £jforadense*-subalgebraofa£*-algebra 
or of semisimple dual Banach algebra with involution (see [4]). The type of 
argument used in the proof of Theorem 3 also shows that Dr == T>t for a 
Hubert algebra (for this notion see [2]). 

Next let A be a semiprime topological ring (no nonzero nilpotent one­
sided ideals). Proper closed prime ideals arise naturally in the study of A in 
the following way. For an ideal I in A, its left annihilator {xeA.xI — (0)} 
coincides with its right annihilator {x e A : Ix = (0)} ; call this set la. Let 
91(A) denote the set of ideals I for which Ia ± (0) and consider 91(A) as a 
partially ordered set under set inclusion. Its maximal elements are precisely 
the proper closed prime ideals I in A for which Ia ^ (0). 

Call A a generalized annihilator ring (generalized dual ring) if Ia =̂  (0) 
(Iaa = ƒ) for all closed ideals I =£ A. Special cases are the semisimple 
annihilator rings of [1] (dual rings of [4]). A theory of these rings is devel­
oped. The ideas are interrelated. If A is a generalized annihilator ring, every 
closed ideal has this property if and only if A is a generalized dual ring. 
Among other results we obtain the following decomposition theorems. 

THEOREM 4. A is the direct topological sum of its minimal closed ideals if 
and only if it is a generalized annihilator ring and the intersection of its 
closed prime ideals is (0). 
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For a normed algebra B we can say more. 

THEOREM 5. Let B be a normed algebra whose completion is semisimple. 
Then B is the direct topological sum of its minimal closed ideals if and only if 
B is a generalized annihilator normed algebra. 

This provides an improvement on standard decomposition theorems 
such as in [1], [8] and [9] for Banach algebras. 
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